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Catenating a character to a String can be expensive 

The operation of adding one character to a String s, as done using this assignment statement: 

s= s + 'c'; 

can take a lot of time — time proportional to the length of s. That’s because Strings are immutable, so the opera-
tion is carried out like this: 

1. Evaluate the expression: 
a. Create a new String object, call it s1, with space for all the chars —those in s and character 'c'; 
b. Copy the chars from s to s1; 
c. Copy char 'c' into s1; 

2. Store into s a pointer to the new object s1. 

Consider writing a loop to add 1,000 characters to an empty String s: 

 for (int k= 0; k < 1000; k= k+1) { 
     s= s + (some char depending on k); 
 } 

Let’s add up the number of characters that will be copied into a new String object: 

 When k = 0: 1 char will be copied 
 When k = 1: 2 chars will be copied 
               … 
 When k = 999: 1000 chars will be copied 

That’s a total of 1 + 2 + 3 + … + 1000 = 1000 * 999 / 2 = 499,500 characters! Very inefficient. 

For every day programming, when it is known that strings will not be long, creating a string as shown above is 
OK. But in a program that will be put into production and used often, creating long strings, the above method of 
creating a string by appending chars over and over is not OK. Below, we show a better way. 

Class StringBuilder 

Use class StringBuilder, in package java.lang, whose objects are mutable. Here is how we would write the 
loop given above along with a statement to store the result in String variable s. We give some explanation below: 

 StringBuilder sb= new StringBuilder(""); 

for (int k= 0; k < 1000; k= k+1) { 
     sb.append(some char depending on k); 

 }  

 String s= sb.toString(); 

Method sb.append appends its argument to sb. No new StringBuilder object is created. There will be a 
need to create a new array of chars from time to time, but this is done in a way that ensures that the number of chars 
copied is proportional to 1000 in the above case. Perhaps 2000 chars are copied in total, or 3000, but certainly not 
499,500! We study this issue when studying complexity and the concept of “amortized time”, but you need not be 
concerned with that here. 

Method append can have an argument of any type, and that argument is turned into a String of chars in the 
usual fashion and appended. 

Class StringBuilder’s method insert can be used to insert its argument at any place with the string of char-
acters that are in the object. We suggest that you read the API documentation for class StringBuilder. 


