Surname, First name Middle name

Name: __

CU NetID: ________

Statement of integrity: *I did not, and will not, violate the rules of academic integrity on this exam.*

(Signature)

Circle your lecture time: 9:05 or 11:15

Q1: ______ 25pts ___

Q2: ______ 25pts ___

Q3: ______ 20pts ___

Q4: ______ 30pts ___

Total: ______ 100pts ___

Instructions:

- This is a 90-minute, closed-book exam; no calculators are allowed.
- There are 4 questions worth a total of 100 points ⇒
 A rough time budget: *Try not to spend more than 18 minutes on a 20-point question.*
- Raise your hand if you have any questions.
- Use the backs of pages or ask for additional sheets of paper as necessary.
- Clarity, conciseness, and style count for credit.
- If you supply multiple answers, we will grade only one.
- Use only Java code. No credit for code written in other programming languages.
- Do not use switch, break, or System.exit statements.
- Do not use arrays.
Question 1: (25 points)

Part (a): (7 points)
Write in the box on the right the output that will be produced by executing the following program.

```java
public class Q1a {

    public static void main(String[] args) {
        int n=3, p=6;
        int w= junk(p);
        System.out.println("w is " + w);
        System.out.println("n is " + n);
        System.out.println("p is " + p);
    }

    public static int junk(int n) {
        int p=1;
        n= n + p;
        System.out.println("n is " + n);
        System.out.println("p is " + p);
        return p;
    }
}
```

Output

```
w is 1
n is 3
p is 1
```

Part (b): (18 points) Consider class `Counter` below.

```java
public class Counter {
    private int tally;
    public int getTally() { return tally; }
    public void stepCount() { tally= tally + 1; }
    public static void showName() { System.out.println("Class Counter"); }
    public void funTally1(int t) { tally= t; }
    public void funTally2(int t) { this.tally= t; }
    public void funTally3(int tally) { this.tally= tally; }
    public void funTally4(int tally) { tally= tally; }
}
```

For each sentence below, indicate whether it is correct by writing “true” or “false” on the blank:

- _______ Variable `tally` is a class variable.
- _______ Variable `tally` is an instance variable.
- _______ Variable `tally` is a field.
- _______ Method `getTally()` is a procedure.
- _______ Without changing the method header, `stepCount()` may be changed to contain a `return` statement.
- _______ Method `stepCount()` may be called from an instance of class `Counter`.
- _______ Method `showName()` may be called from an instance of class `Counter`.
- _______ Methods `funTally1` and `funTally2` have the same functionality.
- _______ Methods `funTally1` and `funTally3` have the same functionality.
- _______ Methods `funTally1` and `funTally4` have the same functionality.
- _______ Methods `funTally3` and `funTally4` have the same functionality.

Write a call to method `showName()`. (E.g., call `showName()` in DrJava’s interaction pane.)
Question 2: (25 points)

A textile company mixes dyes to formulate special colors. Complete the method below to determine and print the color that results from mixing black and yellow dyes and from adding a metal oxide. The company’s super secret formula is as follows:

- Using more yellow dye than black dye yields “banana brown”
- Using the same amounts of black and yellow dyes or using more black than yellow yields “gooey grey,” but if over 80% of the mix is black dye, then the color becomes “bean black.”
- Adding a metal oxide to the dye mix will add a metallic sheen, resulting in “metallic banana brown,” “metallic gooey grey,” or “metallic bean black.”

Hint: Remember that you can concatenate Strings using the + operator.

```java
/** Mix dyes and metal oxide to form special colors as specified above.
 * b is fraction of black dye (e.g., 80% black dye means b is 0.8)
 * y is fraction of yellow dye
 * addOxide has the value true if metal oxide is added to the dye mix
 */
public static void makeColor(double b, double y, boolean addOxide) {
    String color;  //the color created by mixing the dyes and metal oxide
    System.out.println("The final color is " + color);
}
```
Write a class `PyramidFrame` that customizes `JFrame` to have one procedure, `makePyramid()`. The task of method `makePyramid()` in an instance of this class is to create and show one other `JFrame` centered above this one (the original frame), see diagram. The top `JFrame` is half the width of the original frame and has the same height as the original frame. Below are the specifications of some useful instance methods from class `JFrame`:

- `show()` Show the frame
- `getHeigh()` (int) the height of the window in pixels
- `getWidth()` (int) the width of the window in pixels
- `setSize(w,h)` Set the width and height of the window to w and h
- `getX()` (int) x-coordinate of the top left corner of the window
- `getY()` (int) y-coordinate of the top left corner of the window
- `setLocation(u,v)` Set the x- and y-coordinates of the top left corner of the window to u and v

```java
import javax.swing.*;

public class ________________________________ {
    // Your code here
}
```
Question 4: (30 points)

A positive, even number n is divisible by 2. For example,

- 8 is divisible by 2 three times (8/2 gives 4; 4/2 gives 2; 2/2 gives 1; 1 is not divisible by 2)
- 2 is divisible by 2 once
- 10 is divisible by 2 once (10/2 gives 5; 5 is not divisible by 2)

Given a positive integer value in variable n (type int), write a program fragment to determine the number of times that n is divisible by 2 and store this number in a variable $d2$ (type int). If variable n stores an odd number, set $d2$ to zero and display the message “n is not divisible by 2.”

Do not use any pre-defined methods other than `System.out.println`.

//Write your code fragment below assuming that n has been declared and initialized. //n>0