CS100J Spring 2004: Project 2 Grading Guide

Scores
- c and s stand for correctness and style; see table below.
- ** counts as two items (errors)
- +x is x bonus points for exemplary work (contributes to semester “Bonus Bucket”)

<table>
<thead>
<tr>
<th>Score</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td># correctness errors</td>
<td>Nothing turned in</td>
<td>>=10</td>
<td>7-9</td>
<td>5-6</td>
<td>3-4</td>
<td>0-2</td>
</tr>
<tr>
<td># style errors</td>
<td>Nothing turned in</td>
<td>>=7</td>
<td>4-6</td>
<td>2-3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

General
- (s0a) proper code indentation
- (s0b) using named constants, appropriate comments, and meaningful variable names
- (s0c) line length limited to 70 characters
- (s0d) appropriate code header comments
- (c0a) q1 and q5 is submitted as a plain text file “q1q5.txt”

1. Warm Up Questions
- (c1a) a and b are non-static
- (c1b) modifier added is public
- (c1c) filename is ComplexNumber.java
- (c1d) ComplexNumber is not an application

2. ComplexNumber class
- (c2a) a and b are doubles
- (c2b) a and b are public, non-static
- (c2c) Constructor sets arguments correctly
- (c2d) add method adds correctly
- (c2e) subtract method subtracts correctly
- (c2f) multiply method multiplies correctly
- (c2g) divide method divides correctly
- (c2h) magnitude method returns correct magnitude
- (c2i) conjugate method returns correct conjugate
- (c2j) isComplex method correctly identifies complex number
- (c2k) toString handles real-only numbers
- (c2l) toString handles positive imaginary numbers
- (c2m) toString handles negative imaginary numbers (no plus sign)
- (c2n) toString handles complex-only numbers
- (c2o) No compilation errors
- (c2p) Correct method declarations
- (c2q) Unsuccessful attempt to use DecimalFormat should not interfere with toString's correctness
- (s2a) Comments for each field
- (s2b) Specification comments for each method
- (s2c) Helpful comments in toString

3. ComplexCircle
- (c3a) ** Uses a loop (otherwise, this is unacceptable inefficient; what if we had asked for 5 degree increments instead of 45 degree increments?)
- (c3b) Converts to radians at some stage
- (c3c) Increments angle appropriately
- (c3d) Displays correct corresponding complex number
- (c3e) no compilation error
- (c3f) Correct method declaration
- (s3a) Specification comment for the method
- (s3b) Helpful comments in method
- (s3c) Displays each complex number in some delimited manner (i.e. Easy to read)
4. **Client Code**
- (c4a) Correctly prompts for the real part of the complex number
- (c4b) Correctly prompts for the imaginary part of the complex number
- (c4c) Correctly constructs complex number based on user input
- (c4d) Uses an if-else if-else block
- (c4e) Uses correct conditions
- (c4f) Calls each Op method correctly
- (c4g) No compilation error
- (s4a) No changes in framework code
- (s4b) Prompts to user are meaningful

5. **Testing your code**
- (c5a) Answers are different because of double precision/round off error
- (c5b) The loop terminates when choice == 8 and choice is user determined

6. **Bonus**
- (+1) ComplexNumber toString method prints formatted string with one decimal place. *Note if not using DecimalFormat class, student must take care to implement half-even rounding.
- (+1) ComplexNumber divide method handles divide by zero cases