10/15/19

A Mathematical Example: Factorial Factorial as a Recursive Function
* Non-recursive definition: def factorial(n): *n!=n (n-1)!
n'=nXnlxX.. . X2x1 """Returns: factorial of n. | 0! =1
=n(-1 X ... X2X1) ife:nzoanmt"""
In==0

 Recursive definition: | return 1 Base case(s)

n!'=n(n-1)! forn=0 Recursive case

0l=1 Base case return n*factorial(n-1)

What happens if there is no base case? What happens if there is no base case?
2
Example: Fibonnaci Sequence Fibonacci as a Recursive Function
e Sequence of numbers: 1,1,2,3,5,8,13, ... def fibonacci(n): « Function that calls itself
do Q1 Gp A3 s A5 Qe """Returns: Fibonacci no. 4, = Each call is new frame
= Get the next number by adding previous two Precondition: n = 0 an int™ « Frames require memory
= What is ag? ifn<=1: = o calls = o memory
* Recursive definition: | return 1 8
fibonacci 3
"y = Apl + Ap Recursive Case return (fibonacci(n-1y+ .

=aqy=1 Base Case

fibonacei(n-R))
g =1 (another) Base Case /\

fibonacci \L fibonacci \L

Why did we need two base cases this time? nl 4] !
4
Fibonacci: # of Frames vs. # of Calls Recursion is best for Divide and Conquer
* Fibonacci is very inefficient. Goal: Solve problem P on a piece of data

= fib(n) has a stack that is always < n

data |

Idea: Split data into two parts and solve problem

datal | data2 |

- AN J
Y Y
Solve Problem P Solve Problem P

“ombine Answer!
fib(1)| |fib(0) Combine Answer

= But fib(n) makes a lot of redundant calls

Path toend =
the call stack

fib(1) | | fib(0)

Divide and Conquer Example

Count the number of 'e's in a string:

ple(n|n|e

One 'e' One 'e'

Divide and Conquer Example

10/15/19

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
= Some data cannot be broken up
= Have to compute this answer directly
2. Decide how to break up your data
= Both “halves” should be smaller than whole
= Often no wrong way to do this (next lecture)
3. Decide how to combine your answers
= Assume the smaller answers are correct
= Combining them should give bigger answer

def num_es(s): “Short-cut” for
""Returns: # of 'e's in s"") "
1. Handle small data if s[0] == ‘¢
ifg==" return 1
| return 0 / olse:
elif len(s) == 1: return 0
| peturn 1 if s[0] =='¢' else O L]

2. Break into two parts s[0] s[1:]

left = num_es(s[0]) |£| HE

right = num_es(s[1:])
3. Combine the result 0 + 2

return left+right
9
Minor Optimization
def deblank(s):
""Returns: s w/o blanks""
ifg=="
| return s
left = s[0] Eliminate the
if s[0]=="" second base
| left=" by combining
right = deblank(s[1:])
return left+right
11

8
Exercise: Remove Blanks from a String
def deblank(s):
""Returns: s w/0 blanks""
ifg==":
\ return s
elif len(s) == 1:
| return "if s[0] =="'"else s
left = deblank(s[0]) }
right = deblank(s[1:])
return left+right }
10
Following the Recursion
i [][] w ([
oo o] [] s [:[o]]
[a] aetlnic[Jo] [e] wmp [a]o]c]
X ww[[[] = (L
[s]] wp [
m deblank ﬁ
=
12

