
10/27/19

1

What Does str() Do On Objects?

• Does NOT display contents
>>> p = Point3(1,2,3)
>>> str(p)
'<Point3 object at 0x1007a90>'

• Must add a special method
§ __str__ for str()
§ __repr__ for repr()

• Could get away with just one
§ repr() requires __repr__
§ str() can use __repr__

(if __str__ is not there) 

class Point3(object):
"""Class for points in 3d space"""
…

def __str__(self):
"""Returns: string with contents"""
return '('+str(self.x) + ',' + 

str(self.y) + ',' +
str(self.z) + ')'

def __repr__(self):
"""Returns: unambiguous string"""
return str(self.__class__)+

str(self)

1

Making a Class into a Type

1. Think about what values you want in the set
§ What are the attributes? What values can they have?

2. Think about what operations you want
§ This often influences the previous question

• To make (1) precise: write a class invariant
§ Statement we promise to keep true after every method call

• To make (2) precise: write method specifications
§ Statement of what method does/what it expects (preconditions)

• Write your code to make these statements true!

2

Planning out a Class

class Time(object):
"""Class to represent times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):
"""Move time hours and mins
into the future.
Pre: hours int >= 0; mins in 0..59"""

def isPM(self):
"""Returns: True if noon or later."""

Class Invariant
States what attributes are present 
and what values they can have.
A statement that will always be 
true of any Time instance.

Method Specification
States what the method does.
Gives preconditions stating what 
is assumed true of the arguments.

3

Implementing an Initializer

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

You put code here

This is true to start

This should be true
at the end

self.hour = hour
self.min = min

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

4

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours 
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
self.hour = self.hour + hours             

This is true to start
What we are supposed
to accomplish

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

?

5

Enforce Method Preconditions with assert
class Time(object):

"""Class to represent times of day."""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
assert type(hour) == int
assert 0 <= hour and hour < 24
assert type(min) == int
assert 0 <= min and min < 60

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59""”
assert type(hour) == int
assert type (min) == int
assert hour >= 0
assert 0 <= min and min < 60

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

Initializer creates/initializes all 
of the instance attributes.
Asserts in initializer guarantee the 
initial values satisfy the invariant.

Asserts in other methods enforce 
the method preconditions.

6



10/27/19

2

Hiding Methods From Access

• Hidden methods
§ start with an underscore
§ do not show up in help()
§ are meant to be internal

(e.g. helper methods)
• But they are not restricted

§ You can still access them
§ But this is bad practice!
§ Like a precond violation

• Can do same for attributes
§ Underscore makes it hidden
§ Only used inside of methods

class Time(object):
"""Class to represent times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

def _is_minute(self,m):
"""Return: True if m valid minute"""
return (type(m) == int and 

m >= 0 and m < 60)

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
assert self._is_minute(m)
… Helper

7

Enforcing Invariants

class Time(object):
"""Class to repr times of day.
Inv: hour is an int in 0..23
Inv: min is an int in 0..59
"""

• These are just comments!
>>> t = Time(2,30)
>>> t.hour = 'Hello'

• How do we prevent this?

• Idea: Restrict direct access
§ Only access via methods
§ Use asserts to enforce them

• Example:
def getHour(self):

"""Returns: the hour"""
return self.hour

def setHour (self,value):
"""Sets hour to value"""
assert type(value) == int
assert value >= 0 and value < 24
self.numerator = value

Invariants:
Properties that 

are always true.

8

Data Encapsulation

• Idea: Force the user to only use methods
• Do not allow direct access of attributes

Setter Method
• Used to change an attribute
• Replaces all assignment 

statements to the attribute
• Bad:

>>> t.hour = 5
• Good:

>>> f.setHour(5)

Getter Method
• Used to access an attribute
• Replaces all usage of 

attribute in an expression
• Bad:

>>> x = 3*t.hour
• Good:

>>> x = 3*t.getHour()

9

Data Encapsulation

class Time(object):
"""Class to repr times of day. """

def getHour (self):
"""Returns: hour attribute"""
return self._hour

def setHour(self, h):
""" Sets hour to h        
Pre: h is an int in 0..23"""
assert type(h) == int
assert 0 <= h and h < 24
self._hour = d

Setter precondition is 
same as the invariant

Getter

Setter

NO ATTRIBUTES
in class specification

Method specifications
describe the attributes

10

Encapsulation and Specifications

class Time(object):
"""Class to represent times of day. """

### Hidden attributes
# Att _hour: hour of the day
# Inv: _hour is an int in 0..23
# Att _min: minute of the hour
# Inv: _min is an int in 0..59

No attributes 
in class spec

These comments     
make it part of the 
class invariant
but not part of the
(public) interface

These comments 
do not go in help()

11

Mutable vs. Immutable Attributes

Mutable

• Can change value directly
§ If class invariant met

§ Example: turtle.color

• Has both getters and setters
§ Setters allow you to change

§ Enforce invariants w/ asserts

Immutable

• Can’t change value directly
§ May change “behind scenes”

§ Example: turtle.x

• Has only a getter
§ No setter means no change

§ Getter allows limited access

May ask you to differentiate on the exam

12


