What Does str() Do On Objects?

* Does NOT display contents class Point3(object):
>>>p= POiI1t5(l 2 3) """Class for points in 3d space"""
1Ry

>>> gtr(p)
| . . , def __str__(self):
<Point3 object at 0x1007a90>" "Returns: string with contents™

¢ Must add a special method return '(+ste(self.x) + ') +
= _ gtr__ forste() ste(self.y) + ') +
= _ repr__for reprQ ste(self.z) +)'

¢ Could get away with just one def _repr_(self:

® repr() requires __repr__ """Returns: unambiguous string""

= str() can use __repr__ return str(self.__class__)+
(if __str__ is not there) ste(self)

10/27/19

Making a Class into a Type

1. Think about what values you want in the set
= What are the attributes? What values can they have?

2. Think about what operations you want
= This often influences the previous question
* To make (1) precise: write a class invariant
= Statement we promise to keep true after every method call

* To make (2) precise: write method specifications

= Statement of what method does/what it expects (preconditions)

* Write your code to make these statements true!

Planning out a Class
class Time(object): N
"""Clags to represent times of day. Class Invariant
Inv: hour is an int in 0..23 States what attributes are present
Inv: min is an int in 0..59"™ and what values they can have.
A statement that will always be
def __init_(self, hour, min): true of any Time instance.
""The time hour:min.
Pre: hour in 0..23; min in 0..59"™"
def meremept(self, hours, mlps): Method Specification
"""Move time hours and mins
into the future. } States what the method does.
Pre: hours int >= 0; mins in 0..59""" Gives preconditions stating what
is assumed true of the arguments.
def isPM(self):
"""Returns: True if noon or later."""

Implementing an Initializer

def __init__(self, hour, min):
"""The time hour:min. L.
Pre: hour in 0..23; min in 0..59"" @ Thjs is true to start

self.hour = hour
self.min = min

You put code here

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

Implementing a Method

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

This is true to start

‘What we are supposed
def increment(self, hours, mins): L—"1to accomplish
"""Move this time <hours> hours <«
and <mins> minutes into the future. ..
Pre: hours [int] >= O; mins in 0..59"" €= This is also true to start

self. min = self.min + mins ‘)
self.hour = self.hour + hours o

You put code here

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

Enforce Method Preconditions with assert

class Time(object):
"""Class to represent times of day.""

Inv: hour is an int in 0..23
Inv: min is an int in 0..59"""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""
assert typechour) == int
assert 0 <= hour and hour < 24
assert type(min) == int
assert 0 <= min and min < 60

Initializer creates/initializes all
of the instance attributes.

Asserts in initializer guarantee the

initial values satisfy the invariant.

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59""”
assert type(hour) == int
assert type (min) == int
assert hour >= 0
assert 0 <= min and min < 60

Asserts in other methods enforce
the method preconditions.

Hiding Methods From Access

¢ Hidden methods
= start with an underscore

class Time(object):
"""Class to represent times of day.

Inv: hour is an int in 0..23

= do not show up in hel
P PO Inv: min is an int in 0..59"""

= are meant to be internal
(e.g. helper methods) def _is_minute(self,m):
* But they are not restricted

= You can still access them

"""Return: True if m valid minute""

return (type(m) == int and

= But this is bad practice! m >=0and m < 60)

= Like a precond violation
ef __init__(self, hour, min):

""The time hour:min.

Pre: hour in 0..23; min in 0..59"™"

assert self._is_minuteimi

¢ Can do same for attributes
= Underscore makes it hidden

= Only used inside of methods

Data Encapsulation

¢ Idea: Force the user to only use methods

Do not allow direct access of attributes

Setter Method Getter Method

¢ Used to change an attribute * Used to access an attribute
¢ Replaces all assignment ¢ Replaces all usage of
statements to the attribute attribute in an expression
¢ Bad: ¢ Bad:
>>> t.hour = 8 >>>x = &*t.hour
¢ Good: ¢ Good:

>>> f.setHour(5) >>> x = 3*t.getHour()

Encapsulation and Specifications

class Time(object):

"""Class to represent times of day. ‘
in class spec

Hidden attributes
Att _hour: hour of the day make it part of the
Inv: _hour is an int in 0..23 class invariant

Att _min: minute of the hour | butnot partof the
Inv: _min is an int in 0..59 (public) interface

These comments

These comments
do not go in help()

Enforcing Invariants

class Time(object):
""Class to repr times of day.

Invyhour is an int in 0..23
myz min is an int in 0..59

e These are just comments!
>>>t = Time(R,30)
>>> t.hour = 'Hello'

* How do we prevent this?

* Idea: Restrict direct access
= Only access via methods
= Use asserts to enforce them
¢ Example:
def getHour(self):
"""Returns: the hour""

return self.hour

def setHour (self,value):
"""Sets hour to value""
assert type(value) == int
assert value >= 0 and value < 24
self.numerator = value

Data Encapsulation

class Time(object):

return self._hour

< def setHour(self, h):
""" Sets hour to h

assert type(h) == int
assert 0 <=hand h <24
self._hour=d

"""Class to repr times of day. """

@ def getHour (self): B N
\\ ‘ """Returns: hour attribute™" Method specifications

Pre: his an int in 0..23""

NO ATTRIBUTES
in class specification

describe the attributes

}_ Setter precondition is
same as the invariant

10

Mutable vs. Immutable Attributes

Mutable

Immutable

* Can change value directly
= If class invariant met
= Example: turtle.color

* Has both getters and setters
= Setters allow you to change

= Enforce invariants w/ asserts

11

e Can’t change value directly

= May change “behind scenes”

= Example: turtle.x

e Has only a getter

= No setter means no change

= Getter allows limited access

May ask you to differentiate on the exam

12

