Lecture 18

Using Classes Effectively

Announcements for Today

Assignments Reading
* A4 is due tonight! e Chapter 17 for today
= Survey is still open e Chapter 18 for Tuesday
* AS to be posted tonight But only follow loosely
= Short written assignment
* Due next Thursda .4
y o
* A6 to be posted Sunday *

* Due a day before prelim
= Designed to take two weeks %
= So get started on it early

10/31/19 Using Classes Effectively

Recall: The __init Method

W — WULIAGLI\ UUGLLG 1254, None)

\
de init__ (self, n, s, b):

Initializer: creates a Worker ids

[two underscores

[Called by the constructor]

Worker

Has last name n, SSN s, and boss b

Iname | 'White'

Precondition: n a string,
s an int in range 0..999999999, ssn.| 1234
b either a Worker or None. """

boss None

self.lname = n
self.ssn = s
self.boss =D

10/31/19 Using Classes Effectively

Recall: The __init Method

two underscores

[W — WULIAGLI\ UUGLLG 1254, None)

\

de

init__ (self, n, s, b):

""Tnitializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string,
s an int in range 0..999999999,
b either a Worker or None. """

self.lname = n

-

self.essn = s
self.boss =D
10/31/19

Using Classes Effectively

-

Are there other
special methods
that we can use?

~

/

Example: Converting Values to Strings

str() Function repr () Function
e Usage: str() e Usage: repr()
= Evaluates the expression = Evaluates the expression
= Converts it into a string = Converts it into a string
 How does it convert? How does it convert?
= gstr(R) — 2 = prepr(R) — '
= str(True) — 'True’ = prepr(True) — 'True’
= str('True') — 'True' = prepr('True’) — "'True"

= gtr(Pointd()) — '(0.0,0.0,0.0)' repr(Point3()) —

"<class 'Pointd"> (0.0,0.0,0.0)"

10/31/19 Using Classes Effectively 5

Example: Converting Values to Strings

str() Function repr () Function
4 .)
» Usage: str() o repr() 1s for
= Evaluates the expression unambi gious
= Converts it into a strin .
| g 9 repre?sentatlorl\l y
e How does it con What type is How does 1t co ‘
. ste(2) o thi lue? . @) o The value’s
str(?) — 1S value’ repr(?) — type is clear
= str(True) — 'Tru = repr(True) —
= str('True') — 'True' = pepr('True’) — "'True"
= gtr(Pointd()) — '(0.0,0.0,0.0)' = repr(Pointd()) —

"<class 'Point3™> (0.0,0.0,0.0)"

10/31/19 Using Classes Effectively 6

What Does str() Do On Objects?

* Does NOT display contents class Point3(object):

>>> p = Point3(1,2,3) """(Class for points in 3d space""

>>> str(p) def __str__ (self):

<Pointd object at 0x1007a90> """Returns: string with contents"""
e Must add a special method return '('+str(self.x) + ', +

= _ str__ for strQ str(self.y) + ', +

= _ repr__ for repr() str(self.z) + ")
* Could get away with just one def _ repr_ (self):

= repr() requires __repr__ ""Returns: unambiguous string""

= str() can use __repr__ return str(self.__ class_)+

(if __str__ is not there) str(self)

10/31/19 Using Classes Effectively 7

What Does str() Do On Objects?

 Does NOT display contents
>>>p = Point3(1,3,3)
>>> str(p)

'<Pointd object at 0x1007a90>'

e Must add a special method
= gtr for str()
= repr__ for repr()

e Could get away with just one
= repr() requires __repr

= gtr() can use __repr__
(if __str__ is not there)

10/31/19 Using Classes Effectively

class Point3(object):

"""(Class for points in 3d space""

def _ str (self):

"""Returns: string with contents"""

return '('+str(self.x) +',' +
ste(self.y) + ', +
str(self.z) +")'

Gives the
class name

def __repr__ (self):
"""Returns: unambi

return str(self. class)+
str(self)

repr__ using
__str__ as helper

Designing Types From first
day of class!

. —I/
e Type: set of values and the operations on them

" Int: (set: integers; ops: +,—, *,//,...)
* Time (set: times of day; ops: time span, before/after, ...)
= Worker (set: all possible workers; ops: hire,pay,promote,...)
= Rectangle (set: all axis-aligned rectangles in 2D;
ops: contains, intersect, ...)
e To define a class, think of a real type you want to make
= Python gives you the tools, but does not do it for you
= Physically, any object can take on any value
= Discipline is required to get what you want

10/31/19 Using Classes Effectively

Making a Class into a Type

1. Think about what values you want in the set
* What are the attributes? What values can they have?

2. Think about what operations you want
= This often influences the previous question

 To make (1) precise: write a class invariant

= Statement we promise to keep true after every method call

* To make (2) precise: write method specifications

= Statement of what method does/what 1t expects (preconditions)

* Write your code to make these statements true!

10/31/19 Using Classes Effectively 10

Planning out a Class

class Time(object):
"""(Class to represent times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59""

def __init__ (self, hour, min):

"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):
"""Move time hours and mins
into the future.
Pre: hours int >= 0; mins in 0..59""

def isPM(self):
""Returns: True if noon or later."""

+

|

Class Invariant

States what attributes are present
and what values they can have.

A statement that will always be
true of any Time instance.

Method Specification
States what the method does.

Gives preconditions stating what

is assumed true of the arguments.

10/31/19 Using Classes Effectively

11

Planning out a Class

class Rectangle(object):
"""Class to represent rectangular region

Inv: t (top edge) is a float
Inv: 1 (left edge) is a float
Inv: b (bottom edge) is a float —
Inv: r (right edge) is a float

Additional Inv: 1 <=r and b <=t.""

def __init_ (self, t, 1, b, r):
"""The rectangle [, r] x [t, b]
Pre: args are floats; 1 <=r; b <=t"""

def area(self):
"""Return: area of the rectangle.""" }

def intersection(self, other):

"""Return: new Rectangle describing
intersection of self with other."""

Class Invariant

States what attributes are present
and what values they can have.

A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.

Gives preconditions stating what

is assumed true of the arguments.

10/31/19 Using Classes Effectively

12

Planning out a Class

class Rectangle(object):

""Class to represent rectangular region

Inv: t (top edge) is a float
Inv: 1 (left edge) is a float
Inv: b (bottom edge) is a float
Inv: r (right edge) is a float

Class Invariant

—

States what attributes are present
and what values they can have.

A statement that will always be

Additional Inv: 1 <=r and b <= t."" _J | true of any Rectangle instance.

def __init_ (self, t, 1, b, r):
"""The rectangle [1, r] x [t, b
Pre: args are floats; 1 <=r;

def area(self):

Special invariant relating
attributes to each other

Method Specification

"""Return: area of the rectangle."" } States what the method does.

def intersection(self, other):

"""Return: new Rectangle describing

Gives preconditions stating what

is assumed true of the arguments.

intersection of self with other."""

10/31/19

Using Classes Effectively

13

Planning out a Class

class Hand(object):
"""Instances represent a hand in cards.

Inv: cards is a list of Card objects.
This list is sorted according to the
ordering defined by the Card class."""

def __init__ (self, deck, n):

"""Draw a hand of n cards.
Pre: deck is a list of >=n cards"""

def isFullHouse(self):

"""Return: True if this hand is a full
house; False otherwise"""

def discard(self, k):
"""Discard the k-th card."""

b

F

Class Invariant

States what attributes are present
and what values they can have.

A statement that will always be
true of any Rectangle instance.

Method Specification
States what the method does.

Gives preconditions stating what

is assumed true of the arguments.

10/31/19 Using Classes Effectively

14

Implementing a Class

e All that remains 1s to fill in the methods. (All?!)
* When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled

4. Ensure class invariant i1s true when done

* Later, when using the class:
* When calling methods, ensure preconditions are true

= [f attributes are altered, ensure class invariant 1s true

10/31/19 Using Classes Effectively 15

Implementing an Initializer

def __init__ (self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"™" This 1s true to start

self.hour = hour
self. min = min

You put code here

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

10/31/19 Using Classes Effectively 16

Implementing a Method

Inv: hour is an int in 0..23

Inv: min is an int in 0..59 This 1s true to start

What we are supposed
def increment(self, hours, mins): to accomolish
"""Move this time <hours> hours / P
and <mins> minutes into the future. o
Pre: hours [int] >= 0; mins in 0..59""" {— This is also true to start

self. min = self.min + mins ‘)

self.hour = self.hour + hours ® You put code here

——

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

10/31/19 Using Classes Effectively 17

Implementing a Method

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

What we are supposed
def increment(self, hours, mins): to accomolish
"""Move this time <hours> hours / P
and <mins> minutes into the future. o
Pre: hours [int] >= 0; mins in 0..59""" {— This is also true to start

self. min = self.min + mins
self.hour = (self.hour + hours +

self.min // 60)
self.min = self.min % 60 You put code here
self.hour = self.hour % 24

——

This should be true
at the end

Inv: hour is an int in 0..23
Inv: min is an int in 0..59

10/31/19 Using Classes Effectively 18

Object Oriented Design

Interface Implementation

* How the code fits together * What the code actually does
" interface btw programmers = when create an object
" interface btw parts of an app = when call a method

e Given by specifications * Given by method definitions
= Class spec and invariants = Must meet specifications
= Method specs and preconds = Must not violate invariants
= Interface is ALL of these = But otherwise flexible

Important concept for making

large software systems

10/31/19 Using Classes Effectively 19

Implementing a Class

e All that remains 1s to fill in the methods. (All?!)
* When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled

4. Ensure class invariant i1s true when done

* Later, when using the class:
* When calling methods, ensure preconditions are true

= [f attributes are altered, ensure class invariant 1s true

10/31/19 Using Classes Effectively 20

Recall: Enforce Preconditions with assert

def anglicize(n):

"""Returns: the anglicization of int n.
Precondition: n an int, 0 <n < 1,000,000"""
assert type(n) == int, str(n)+' is not an int'
a,ssert[O <nandn< IOOOOOO] [repr(n)+' is out of ra,nge']
Implement od here...

r

Check (part of)

the precondition when precondition violated

[(Optional) Error message

10/31/19 Using Classes Effectively 21

Enforce Method Preconditions with assert

class Time(object):

""(lass to represent times of day."" Inv: hour is an int in 0..83
Inv: min is an int in 0..59"""

def __init__ (self, hour, min):

"""The time hour:min.

Pre: hour in 0..23; min in 0..59"™"

assert type(hour) == int) | Initializer creates/initializes all
assert 0 <= hour and hour < 24 of the instance attributes.

assert type(min) == int Asserts 1n 1nitializer guarantee the
assert 0 <= min and min < 60 J | initial values satisfy the invariant.

def increment(self, hours, mins):
"""Move this time <hours> hours

and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59""”
assert type(hour) == int

assert type (min) == int Asserts in other methods enforce
assert hour >= 0 the method preconditions.

assert 0 <= min and min < 60

—

Hiding Methods From Access

e Hidden methods
= start with an underscore
* do not show up in help()

= are meant to be internal
(e.g. helper methods)

e But they are not restricted
" You can still access them
= But this is bad practice!
= Like a precond violation

e (Can do same for attributes

= Underscore makes it hidden

* Only used inside of methods

10/31/19

Using Classes Effectively

class Time(object):
"""(Class to represent times of day.

Inv: hour is an int in 0..23
Inv: min is an int in 0..59""

def _is_minute(self,m):
"""Return: True if m valid minute"""

return (type(m) == int and
m >= 0 and m < 60)

def __init__ (self, hour, min):

"""The tlme hour:min_
Pre: hour in 0..23; min in 0..59"""

assert self._is minute(m)

ﬁ Helper]
23

Hiding Methods From Access

e Hidden methods class Time(object):

= start with an underscore Class to represent times of day.

Inv: hour is an int in 0..83
HIDDEN [Min is an int in 0..59"""

= do not show up in help()

= are meant to be internal

(e.g. helper methods) def _is_minute(self,m):

* But they are not restricted """Return: True if m valid minute"""

return (type(m) == int and
m >= 0 and m < 60)

= You can still access them
= But this is bad practice!

= Like a precond violation . ,
def __init__ (self, hour, min):

e (Can do same for attributes " The time hour:min.

0 Pre: hour in 0..23; min in 0..59"""
Will come back to this assert self._is_minute(m)
' i T Helper]

10/31/19 Using Classes Effectively

24

Enforcing Invariants

class Time(object):

"mnOlgag to repr times of day

Inv:|hour is an int in 0..23
Inv:lmin is an int in 0..59

e These are just comments!
>>>t = Time(2,30)
>>> t.hour = 'Hello'
 How do we prevent this?

e Idea: Restrict direct access
= Only access via methods
= Use asserts to enforce them
 Example:
def getHour(self):

""Returns: the hour"""
return self.hour

def setHour (self,value):
"""Sets hour to value""
assert type(value) == int

self. numerator = value

10/31/19 Using Classes Effectively

assert value >= 0 and value < 24

25

Data Encapsulation

e Idea: Force the user to only use methods
* Do not allow direct access of attributes

Setter Method Getter Method
e Used to change an attribute e Used to access an attribute
e Replaces all assignment e Replaces all usage of
statements to the attribute attribute in an expression

 Bad: Bad:

>>> t.hour = B >>>x = §*t.hour
e Good: Good:

>>> t,.setHour(5) >>> x = 3*t.getHour()

10/31/19 Using Classes Effectively 26

Data Encapsulation

class Time(object):
"""Class to repr times of day. """

Getter |def getHour (self):
’ ""Returns: hour attribute™"
return self. hour

%} def setHour(self, h):
"M Sets hour to h

Pre: his an int in 0..23™™ }
assert type(h) == int

assert 0 <=hand h <24
self._hour =d

NO ATTRIBUTES
in class specification

Method specifications
describe the attributes

Setter precondition is
same as the invariant

10/31/19 Using Classes Effectively

27

Data Encapsulation

class Time(object): NO ATTRIBUTES
"""Class to repr times of day. """

in class specification

Getter |def getHour (self):

I """Returns: hour attribute™""
return self. hour describe the attributes

Method specifications

Setter }
[OEEANE Hidden attribute user
mnmun Sets hc

. should NOT know about KISUIIHITNIEE
Pre: I is a Seeu= = the invariant

assert type(h) == int
assert O <=hand h <24
self. hour =d

10/31/19 Using Classes Effectively

28

Encapsulation and Specifications

class Time(object):

"(Class to represent times of day. """ No i‘“ﬂbutes }
1N Cl1daSsSs SpeC

##+# Hidden attributes - :
cSE comments
Att _hour: hour of the day make it part of the
Inv: hour is an int in 0..23 class invariant
Att _min: minute of the houp | but not part of the
Inv: minis anintin 0..59 | (public) interface

These comments
do not go 1n help()

10/31/19 Using Classes Effectively 29

Encapsulation and Specifications

class Time(object):

|

""(lass to represent times of day. "] No attributes
in class spec
##+# Hidden attributes — t
OMMmMments
i Ncw style for 2019! [
Inv: 1 ivariant

Att _min: minute of the houp | butnot part of the
(public) interface

Inv: min is an int in 0..59

These comments
do not go 1n help()

10/31/19 Using Classes Effectively

30

Class Invariant vs Interface

Class Invariant Interface

* List attributes that are present ¢ Describes what 1s accessible

* Both hidden AND unhidden = Unhidden methods/attribs
= Lists the invariants of each = What 1s visible in help()
e For the implementer e For user/other programmers
= Guide for the initializer = Enough to create an object
= Guide for method definitions * Enough to call the methods

Previous years of CS1110

confused these two topics

10/31/19 Using Classes Effectively 31

Mutable vs. Immutable Attributes

Mutable Immutable
e (Can change value directly e Can’t change value directly
= [If class invariant met = May change “behind scenes”
= Example: turtle.color = Example: turtle.x
e Has both getters and setters * Has only a getter
= Setters allow you to change = No setter means no change
* Enforce invariants w/ asserts = Getter allows limited access

May ask you to differentiate on the exam

10/31/19 Using Classes Effectively 32

Mutable vs. Immutable Attributes

Mutable Immutable
e (Can change value directly e Can’t change value directly
= [If class invariant met = May change “behind scenes”
= Example: turtle.color = Example: turtle.x

 Has both[getters and setters * Has only a getter

—_—
= Setters allow Where? = No setter means no change
Next week.

= Enforce inva = Getter allows limited access

May ask you to differentiate on the exam

10/31/19 Using Classes Effectively 33

Exercise: Design a (2D) Circle

* What are the attributes?
= What 1s the bare minimum we need?
* What are some extras we might want?

= What are the invariants?

* What are the methods?
= With just the one circle?

= With more than one circle?

10/31/19 Using Classes Effectively

34

