
Typing and Subclasses

Lecture 21

Announcements for This Lecture

Assignments Prelim 2

11/12/19 2Typing and Subclasses

• A4 is now graded
§ Mean: 90.4 Median: 93
§ Std Dev: 10.6
§ Mean: 8.5 hrs Median: 8 hrs
§ Std Dev: 3.5 hrs

• A5 is also graded
§ Mean: 47.2 Median: 49
§ A: 47 (75%), B: 40 (20%)

§ Solutions posted in CMS

• Prelim, Nov 21st at 7:30
§ Same rooms as last time

• Material up to TODAY
§ Recursion + Loops + Classes
§ Study guide is now posted
§ Review Sun. 5pm in Statler

• Conflict with Prelim?
§ Prelim 2 Conflict on CMS
§ SDS students must submit!

What is Typing?

• We know what a (Python) type is
§ All values in Python have a type
§ Typing: act of finding the type of a value
§ Example: type(x) == int

• Commonly used in preconditions
§ Definition assumes certain operations
§ If operations are missing, def may crash
§ So we use assert to check for operations

11/12/19 Typing and Subclasses 3

class Fraction(object):
"""Instances are normal fractions n/d"""
INSTANCE ATTRIBUTES
_numerator: int
_denominator: int > 0

class BinaryFraction(Fraction):
"""Instances are fractions k/2n """
INSTANCE ATTRIBUTES same but
_denominator: int = 2n, n ≥ 0

def __init__(self,k,n):
"""Make fraction k/2n """
assert type(n) == int and n >= 0
super().__init__(k,2 ** n)

>>> p = Fraction(1,2)
>>> q = BinaryFraction(1,2) # 1/4

>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python
converts to

__mul__ has precondition
type(q) == Fraction

11/12/19 Typing and Subclasses 4

A Problem with Subclasses

The isinstance Function

• isinstance(<obj>,<class>)
§ True if <obj>’s class is same

as or a subclass of <class>
§ False otherwise

• Example:
§ isinstance(e,Executive) is True
§ isinstance(e,Employee) is True
§ isinstance(e,object) is True
§ isinstance(e,str) is False

• Generally preferable to type
§ Works with base types too!

11/12/19 Typing and Subclasses 5

e id4

id4
Executive

_salary 0.0

_start 2012

_name 'Fred'

_bonus 0.0

object

Employee

Executive

isinstance and Subclasses

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???

11/12/19 Typing and Subclasses 6

A: True
B: False
C: Error
D: I don’t know

e id5

id5
Employee

_salary 50k

_start 2012

_name 'Bob'

object

Employee

Executive

isinstance and Subclasses

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???

11/12/19 Typing and Subclasses 7

A: True
B: False
C: Error
D: I don’t know

object

Executive

Employee

→ means “extends”
or “is an instance of”

Correct

Fixing Multiplication

class Fraction(object):
"""Instances are fractions n/d"""
_numerator: int
_denominator: int > 0

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert isinstance(q, Fraction)
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = BinaryFraction(1,2) # 1/4

>>> r = p*q

>>> r = p.__mul__(q) # OKAY

Python
converts to

Can multiply so long as it
has numerator, denominator

11/12/19 Typing and Subclasses 8

Error Types in Python

def foo():
assert 1 == 2, 'My error'
…

>>> foo()
AssertionError: My error

def foo():
x = 5 / 0
…

>>> foo()
ZeroDivisionError: integer
division or modulo by zero

11/12/19 Typing and Subclasses 9

Class Names

Error Types in Python

def foo():
assert 1 == 2, 'My error'
…

>>> foo()
AssertionError: My error

def foo():
x = 5 / 0
…

>>> foo()
ZeroDivisionError: integer
division or modulo by zero

11/12/19 Typing and Subclasses 10

Class Names

Information about an error
is stored inside an object.
The error type is the class
of the error object.

Error Types in Python
• All errors are instances of class BaseException
• This allows us to organize them in a hierarchy

11/12/19 Typing and Subclasses 11

BaseException

AssertionError

Exception

id4

AssertionError

'My error'

→ means “extends”
or “is an instance of”

__init__(self,msg)
__str__(self)
…

BaseException

Exception(BE)

AssError(E)

Error Types in Python
• All errors are instances of class BaseException
• This allows us to organize them in a hierarchy

11/12/19 Typing and Subclasses 12

id4

AssertionError

'My error'

→ means “extends”
or “is an instance of”

BaseException

AssertionError

Exception

__init__(self,msg)
__str__(self)
…

BaseException

Exception(BE)

AssError(E)

All of these are
actually empty!

Why?

Python Error Type Hierarchy

11/12/19 Typing and Subclasses 13

BaseException

ExceptionSystemExit

AssertionError ArithmeticErrorAttributeError ValueErrorTypeErrorIOError …

ZeroDivisionError OverflowError …

Argument has
wrong type

(e.g. float([1]))

Argument has
wrong value

(e.g. float('a'))

Why so many error types?http://docs.python.org/
library/exceptions.html

Recall: Recovering from Errors

• try-except blocks allow us to recover from errors
§ Do the code that is in the try-block
§ Once an error occurs, jump to the catch

• Example:
try:

val = input() # get number from user
x = float(val) # convert string to float
print('The next number is '+str(x+1))

except:
print('Hey! That is not a number!')

might have an error

executes if have an error

11/12/19 14Typing and Subclasses

Handling Errors by Type

• try-except blocks can be restricted to specific errors
§ Doe except if error is an instance of that type
§ If error not an instance, do not recover

• Example:
try:

val = input() # get number from user
x = float(val) # convert string to float
print('The next number is '+str(x+1))

except ValueError:
print('Hey! That is not a number!')

Only recovers ValueError.
Other errors ignored.

11/12/19 15Typing and Subclasses

May have ValueError

May have IOError

Handling Errors by Type

• try-except blocks can be restricted to specific errors
§ Doe except if error is an instance of that type
§ If error not an instance, do not recover

• Example:
try:

val = input() # get number from user
x = float(val) # convert string to float
print('The next number is '+str(x+1))

except IOError:
print('Check your keyboard!')

Only recovers IOError.
Other errors ignored.

11/12/19 16Typing and Subclasses

May have ValueError

May have IOError

Creating Errors in Python

def foo(x):
assert x < 2, 'My error'
…

def foo(x):
if x >= 2:

m = 'My error'
err = AssertionError(m)
raise err

11/12/19 Typing and Subclasses 17

• Create errors with raise
§ Usage: raise <exp>
§ exp evaluates to an object
§ An instance of Exception

• Tailor your error types
§ ValueError: Bad value
§ TypeError: Bad type

• Still prefer asserts for
preconditions, however
§ Compact and easy to read

Identical

Creating Errors in Python

def foo(x):
assert x < 2, 'My error'
…

def foo(x):
if x >= 2:

m = 'My error'
err = ValueError(m)
raise err

11/12/19 Typing and Subclasses 18

• Create errors with raise
§ Usage: raise <exp>
§ exp evaluates to an object
§ An instance of Exception

• Tailor your error types
§ ValueError: Bad value
§ TypeError: Bad type

• Still prefer asserts for
preconditions, however
§ Compact and easy to read

Identical

Raising and Try-Except

def foo():
x = 0
try:

raise Exception()
x = 2

except Exception:
x = 3

return x

• The value of foo()?

11/12/19 Typing and Subclasses 19

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Raising and Try-Except

def foo():
x = 0
try:

raise Exception()
x = 2

except Exception:
x = 3

return x

• The value of foo()?

11/12/19 Typing and Subclasses 20

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Correct

Raising and Try-Except

def foo():
x = 0
try:

raise Exception()
x = 2

except BaseException:
x = 3

return x

• The value of foo()?

11/12/19 Typing and Subclasses 21

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Raising and Try-Except

def foo():
x = 0
try:

raise Exception()
x = 2

except BaseException:
x = 3

return x

• The value of foo()?

11/12/19 Typing and Subclasses 22

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Correct

Raising and Try-Except

def foo():
x = 0
try:

raise Exception()
x = 2

except AssertionError:
x = 3

return x

• The value of foo()?

11/12/19 Typing and Subclasses 23

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Raising and Try-Except

def foo():
x = 0
try:

raise Exception()
x = 2

except AssertionError:
x = 3

return x

• The value of foo()?

11/12/19 Typing and Subclasses 24

A: 0
B: 2
C: 3
D: No value. It stops!
E: I don’t know

Correct

Python uses isinstance
to match Error types

Creating Your Own Exceptions

class CustomError(Exception):
"""An instance is a custom exception"""
pass

This is all you need
§ No extra fields
§ No extra methods
§ No constructors
Inherit everything

11/12/19 25Typing and Subclasses

Only issues is choice
of parent error class.
Use Exception if you

are unsure what.

Handling Errors by Type

• try-except can put the error in a variable
• Example:

try:
val = input() # get number from user
x = float(val) # convert string to float
print('The next number is '+str(x+1))

except ValueError as e:
print(e.args[0])
print('Hey! That is not a number!')

11/12/19 26Typing and Subclasses

Some Error subclasses
have more attributes

Accessing Attributes with Strings

• hasattr(<obj>,<name>)
§ Checks if attribute exists

• getattr(<obj>,<name>)
§ Reads contents of attribute

• delattr(<obj>,<name>)
§ Deletes the given attribute

• setattr(<obj>,<name>,<val>)
§ Sets the attribute value

• <obj>.__dict__
§ List all attributes of object

11/12/19 Typing and Subclasses 27

id1

2.0

3.0

5.0

Point3

x

y

z

id2

2.0

3.0

5.0

dict

'x'

'y'

'z'

Treat object
like dictionary

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

11/12/19 Typing and Subclasses 28

class Fraction(object):
"""Instances are fractions n/d"""
numerator: int
denominator: int > 0
…
def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if type(q) != Fraction:

return False
left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

11/12/19 Typing and Subclasses 29

class Fraction(object):
"""Instances are fractions n/d"""
numerator: int
denominator: int > 0
…
def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if (not (hasattr(q,'numerator') and

hasattr(q,'denomenator')):
return False

left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

11/12/19 Typing and Subclasses 30

class Fraction(object):
"""Instances are fractions n/d"""
numerator: int
denominator: int > 0
…
def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if (not (hasattr(q,'numerator') and

hasattr(q,'denomenator')):
return False

left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

Compares anything with
numerator & denominator

Final Word on Typing

• How to implement/use typing is controversial
§ Major focus in designing new languages
§ Some langs have no types; others complex types

• Trade-of between ease-of-use and robustness
§ Complex types allow automated bug finding
§ But make they also make code harder to write

• What we really care about is specifications
§ Duck Typing: we think the value meets a spec
§ Types guarantee that a specification is met

11/12/19 Typing and Subclasses 31

