Lecture 23

Loop Invariants

Announcements for This Lecture

Prelim 2

Assignments

e Thursday at 7:30 pm
= A-F in Uris GO1
* G-H in Malott 228
= J-L in Ives 305
= M-Z in Statler Aud.

e All review material online
= Similar to previous years

= Just changed “hard parts”

11/19/19

e A6 due TOMORROW
= Complete it by midnight
= Also, fill out survey

e A7 due December 10
* Focus of Thursdays lecture
= 2.5 weeks including T-Day
= 2 weeks without the break
= Extensions are possible!

e Both are very important
= Each worth 8% of grade

Loop Invariants

Goal For Today

e This lecture 1s a programming technique

= Completely independent of Python
= Will learn 1t again (exactly) in CS 2110

e Usetul tool for ensuring code correctness

= Some loops are too complicated to debug
= Relying on watches/traces not enough

= This technique helps reduce errors at the start

* Preview of what higher level CS 1s like

11/19/19 Loop Invariants

Terminology: Range Notation

° m..n 1s a range containing n+1-m values

2.5
2.4
2.3
2.2
2.1

contains
contains
contains
contains

contains

2,3,4,5.
2,3,4.
2,3.

2.

777

<What does 2..1 contain?>

11/19/19

Contains 5+1 — 2 =4 values
Contains 4+1 — 2 = 3 values
Contains 3+1 — 2 =2 values
Contains 2+1 — 2 =1 values

A: nothing

B:2.1

C: 1

D: 2

E: something else

Loop Invariants

Terminology: Range Notation

° m..n 1s a range containing n+1-m values

2.5
2.4
2.3
2.2
2.1

contains
contains
contains
contains

contains

2,3,4,5. CCznuuuee——] C S

2.3, 4. o Not the same B
2,3. o as range(m,n) [EE
2. COILLu111o 11—z —1valUCS

77

* The notation m..n, always implies that m <= n+1

= So you can assume that even if we do not say it

* If m =n+1, the range has O values

11/19/19

Loop Invariants

Assertions: Tracking Code State

assertion: true-false statement placed in a program to
assert that 1t 1s true at that point

= (Can either be a comment, or an assert command

invariant: assertion supposed to "always" be true

= If temporarily invalidated, must make it true again
= Example: class invariants and class methods

loop invariant: assertion supposed to be true before
and after each iteration of the loop

iteration of a loop: one execution of its body

11/19/19 Loop Invariants

Assertions versus Asserts

e Assertions prevent bugs # x is the sum of 1..n
= Help you keep track of
what you are doing Comment form
The root of the assertion.
* Also track down bugs| of all bugs!

= Make it easier to check

belief/code mismatches x| ? n| 1

* The assert statement 1s N N
a (type of) assertion

= One you are enforcing | 9 N

= Cannot always convert a
comment to an assert

11/19/19 Loop Invariants

Preconditions & Postconditions

precondition n
J/ 12345678
#x =sumof l.n-1 |
X=X+n x contains the sum of these (6)
n=n-+1
x = sum of 1..n-1 n
S 12345678
postcondition |

x contains the sum of these (10)
 Precondition: assertion

placed before a segment Relationship Between Two
e Postcondition: assertion If precondition is true, then
p]aced after a segment postcondition will be true

11/19/19 Loop Invariants

Solving a Problem

precondition

/

x = sum of 1..n,

n=n-+1
#x= sumofl.n

\

What statement do you
put here to make the
postcondition true?

postcondition

Arx=x + 1
B:x=Xx +n
C:x=Xx + n+l

D: None of the above
E: I don’t know

11/19/19

Loop Invariants

Solving a Problem

precondition

/

x = sum of 1..n,

n=n-+1
x = sum of 1..n\
™~

What statement do you
put here to make the
postcondition true?

postcondition

Arx=x + 1
B:x=Xx +n
C:x=X + n+tl —
D: None of the above
E: I don’t know

BN

j Remember the new value of n}

11/19/19

Loop Invariants

10

Invariants: Assertions That Do Not Change

* Loop Invariant: an assertion that 1s true before and
after each iteration (execution of repetend)

x=0;i=2 .
° . 1=
while i <= b:
X=X+1i*i (. .
4] # invariant
1=1

x = sum of squares of 2..5
true
@ X = X + 1*1
Invariant:

false ‘l‘

X = sum of squares of 2..1-1 T
1=1+1
in terms of the range of integers
that have been processed SO far The 100p pI‘OC@SS@S the I“ange 2.5

11/19/19 Loop Invariants 11

Invariants: Assertions That Do Not Change

x=0;1=2 x |0
Inv: x = sum of squares of 2..i-1 - [
while i <= 5:

X=X+i*

=i+l 1S
Post: x = sum of squares of 2..5 <

invariant

Integers that have
been processed:

true
Range 2..1-1: X =X + 11
false ‘l‘

i=1+4+]1 p—

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;i=2 x |0
Inv: x = sum of squares of 2..i-1 ; X >
while i <= 5:
X=X+i*
=i+l 1=2
Post: x = sum of squares of 2..5 <

invariant

Integers that have
been processed:

true —
Range 2..1-1: 2..1 (empty) X =X+ 1%1
false ‘l‘

i=1+4+]1 p—

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;1=2 x K 4
Inv: x = sum of squares of 2..i-1 ; X X 3
while i <= 5:
X=X+i*
=i+l 1=2
Post: x = sum of squares of 2..5 <

invariant

Integers that have
been processed: 2

frue
Range 2..1-1: 2.2 X =X + 11
false ‘l‘

i=1+4+]1 p—

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;1=2 x KX 13

Inv: x = sum of squares of 2..i-1 .

while i <= 5: : XX X !
X=X+i*
=i+l 1S

Post: x = sum of squares of 2..5 <

invariant

Integers that have
been processed: 2, 3

frue
Range 2..1-1: 2.3 X =X + 11
false ‘l‘

=141 p—

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;i=2 x KX ¥ 29

Inv: x = sum of squares of 2..i-1 .

while i <= 5: : XX X X °
X=X+i*
=i+l 1S

Post: x = sum of squares of 2..5 <

invariant

Integers that have
been processed: 2, 3, 4

frue
Range 2..1-1: 2.4 X =X + 11
false ‘l‘

=141 p—

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;i=2 x (KX K 26 54
Inv: x = sum of squares of 2..i-1 ; Xx X X 9(6

while i <= 5:

X=X+i*

i=1+] 1=2
Post: x = sum of squares of 2..5 <

invariant

Integers that have
been processed: 2, 3, 4, 5

frue
Range 2..1-1: 2.5 X =X + 11
false ‘l‘

i=1+4+]1 p—

The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;i=2 x (KX K 26 54
Inv: x = sum of squares of 2..i-1 ; Xx X X 9(6

while i <= &:

X=X+1"i
i=1+] 1=2
<

Post: x = sum of squares of 2..5
invariant

Integers that have
been processed: 2, 3, 4, 5

frue
Range 2..1-1: 2.5 X =X + 11
false ‘l‘

i=1+4+]1 p—

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates

The loop processes the range 2..5

Designing Integer while-loops

Process integers in a..b

inv: integers in a..k-1 have been processed

k=a

while k <=b:

process integer k
k=k+1

post: integers in a..b have been processed

Invarian
\ 4 variant @ ru€ | Pprocess k

11/19/19

1nit

Command to do something

Equivalent postcondition

invariant

false

Loop Invariants

k=k +1;

19

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN L B W N =

Implement the repetend (process k)

11/19/19 Loop Invariants

20

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN L B W N =

Implement the repetend (process k)

Process b..c

Postcondition: range b..c has been processed

11/19/19 Loop Invariants

21

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN L B W N =

Implement the repetend (process k)

Process b..c

while k <=c¢:

k=k+1
Postcondition: range b..c has been processed

11/19/19 Loop Invariants

22

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN L B W N =

Implement the repetend (process k)

Process b..c

Invariant: range b..k-1 has been processed
while k <=¢:

k=k+1
Postcondition: range b..c has been processed

11/19/19 Loop Invariants

23

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

AN L B W N =

Implement the repetend (process k)

Process b..c
Initialize variables (if necessary) to make invariant true

Invariant: range b..k-1 has been processed
while k <=c:

Process k

k=k+1
Postcondition: range b..c has been processed

11/19/19 Loop Invariants

24

Finding an Invariant
Command to do something

7
Make b True if n is prime, False otherwise

b is True if no int in 2..n-1 divides n, False otherwise

——— Equivalent postcondition
What is the invariant?

11/19/19 Loop Invariants 25

Finding an Invariant

Command to do something

7
Make b True if n is prime, False otherwise

while k <n:
Process k;

k=k+1
b is True if no int in 2..n-1 divides n, False otherwise
——— Equivalent postcondition

What 1s the invariant?

11/19/19 Loop Invariants 26

Finding an Invariant

Command to do something

7
Make b True if n is prime, False otherwise

invariant: b is True if no int in R..k-1 divides n, False otherwise
while k <n:
Process k;

k=k+1
b is True if no int in 2..n-1 divides n, False otherwise

——— Equivalent postcondition
What is the invariant? 123 ...k1kk+1...n

11/19/19 Loop Invariants 27

Finding an Invariant

Command to do something

7
Make b True if n is prime, False otherwise

b = True

k=2

invariant: b is True if no int in R..k-1 divides n, False otherwise
while k < n:

Process k;

k=k+1
b is True if no int in 2..n-1 divides n, False otherwise

——— Equivalent postcondition
What is the invariant? 123 ...k1kk+1...n

11/19/19 Loop Invariants 28

Finding an Invariant

Command to do something

7
Make b True if n is prime, False otherwise

b = True
k=2
invariant: b is True if no int in R..k-1 divides n, False otherwise
while k < n:
Process k;
ifn%k==0:
b = False
k=k+1
b is True if no int in 2..n-1 divides n, False otherwise

——— Equivalent postcondition
What is the invariant? 123 ...k1kk+1...n

11/19/19 Loop Invariants 29

Finding an Invariant

set x to # adjacent equal pairs in s Command to do something

for s = 'ebeee', x =2

while k < len(s):
Process k

k=k+1 . -
x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.
Which have been processed?

A:0.k

B: 1.k
C:0.k-1

D: 1.k-1

E: Idon’t know

Finding an Invariant

set x to # adjacent equal pairs in s Command to do something

for s = 'ebeee', x =2

while k < len(s):
Process k

k=k+1

x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.

Which have been processed? What is the invariant?

A: 0.k A: X =no. adj. equal pairs in s[1..k]
B: 1.k B: x = no. ad;. equal pairs in s[0..k]
C:10..k-1 C: x = no. adj. equal pairs in s[1..k—1]
D: 1.k-1 D: X = no. adj. equal pairs in s[0..k—1]
E: I don’t know E: I don’t know

Finding an Invariant

set x to # adjacent equal pairs in s Command to do something

for s = 'ebeee', x =2
inv: X = # adjacent equal pairs in s[0..k-1]

while k < len(s):
Process k

k=k+1

x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.

Which have been processed? What is the invariant?

A: 0.k A: X =no. adj. equal pairs in s[1..k]

B: 1.k B: X =no. adj. equal pairs in s[0. k]
C:10..k-1 C: x = no. adj. equal pairs in s[1..k—1]
D: 1.k-1 D{x = no. adj. equal pairs in s[0.k—1] |
E: I don’t know E: I don’t know

Finding an Invariant

set x to # adjacent equal pairs in s Command to do something
x=0
for s = 'ebeee’, x = 2
inv: X = # adjacent equal pairs in s[0..k-1]
while k < len(s):
Process k

k=k+1

x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.
What is initialization for k?

A: k=0
B: k=1
C:k=-1

D: I don’t know

Finding an Invariant

set x to # adjacent equal pairs in s Command to do something
x=0
k=1
inv: X = # adjacent equal pairs in s[0..k-1]
while k < len(s):

Process k

for s = 'ebeee', x =2

k=k+1

x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.

What is initialization for k? Which do we compare to “process” k?
A: k=0 A: s[k] and s[k+1]
Bilk =1 B: s[k-1] and s[k]
C:k=-1 C: s[k-1] and s[k+1]
D: I don’t know D: s[k] and s[n]
E: I don’t know

Finding an Invariant

set x to # adjacent equal pairs in s Command to do something
x=0
k=1 for s = 'ebeee’, x =2
inv: X = # adjacent equal pairs in s[0..k-1]
while k < len(s):
Process k
x =x+ 1if (s[k-1] == s[k]) else O
k=k+1

x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.

What is initialization for k? Which do we compare to “process” k?
A: k=0 A: s[k] and s[k+1]
C:k=-1 C: s[k-1] and s[k+
D: I don’t know D: s[k] and s[n]
E: I don’t know

Reason carefully about initialization

s is a string; len(s) >=1 1. What is the invariant?
Set ¢ to largest element in s

c=7?9 Command to do something
k=29
inv:
while k < len(s):
Process k
k=k+1
¢ =largest char in s[0..len(s)—1]

Equivalent postcondition

11/19/19 Loop Invariants 36

Reason carefully about initialization

s is a string; len(s) >=1 1. What is the invariant?
Set ¢ to largest element in s

c=7?9 Command to do something
k=29
inv: c 1s largest element in s[0..k—1]
while k < len(s):

Process k

k=k+1
¢ =largest char in s[0..len(s)—1]

Equivalent postcondition

11/19/19 Loop Invariants 37

Reason carefully about initialization

s is a string; len(s) >=1 1. What is the invariant?

Set ¢ to largest element in s o
, 2. How do we initialize ¢ and k?
c=7?9 Command to do something

k=%??

A: k=0; ¢=g[0]

inv: c 1s largest element in s[0..k—1]
while k < len(s): B: k=1; ¢=s[0]
Process k C: k=1; e=g[l1]

k=k+1
D: k=0; ¢=g[1]
¢ =largest char in s[0..len(s)—1]

Equivalent postcondition E: None of the above

11/19/19 Loop Invariants 38

Reason carefully about initialization

s is a string; len(s) >=1 1. What is the invariant?

Set ¢ to largest element in s o
, 2. How do we initialize ¢ and k?
c=7?9 Command to do something

k=%??

A: k=0; ¢=g[0]
inv: c 1s largest element in s[0..k—1]
while k < len(s): B:[k=1 ¢= S[O]]
Process k C: k=1; ¢=g[1]

k=k+1
D: k=0; ¢=g[1]
¢ =largest char in s[0..len(s)—1]

Equivalent postcondition E: None of the above

An empty set of characters or integers has no maximum. Therefore,
be sure that 0..k—1 is not empty. You must start with k = 1.

11/19/19 Loop Invariants 39

