
Designing Sequence
Algorithms

Lecture 25

Announcements for This Lecture

Prelim 2 Assignment & Lab

• A6 is not graded yet
§ Done early next week
§ Survey still open today

• A7 due Tues, Dec. 10
• Extensions are possible!
• Contact your lab instructor

§ Lab Today: Office Hours
• Get help on A7 aliens
• Anyone can go to any lab

11/26/19

• Difficulty was reasonable
• Mean: 72, Median: 74
• Just 2 points below target

• What do grades mean?
§ A: 80-100
§ B: 60-100
§ C: 30-55

• Final will be about same
§ But a few easier parts

Sequence Algorithms 2

Horizontal Notation for Sequences

Example of an assertion about an sequence b. It asserts that:
1. b[0..k–1] is sorted (i.e. its values are in ascending order)
2. Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]

Given index h of the first element of a segment and
index k of the element that follows that segment,
the number of values in the segment is k – h.

b[h .. k – 1] has k – h elements in it.

b
0 h k

h h+1

(h+1) – h = 1

b <= sorted >=
0 k len(b)

11/26/19 Sequence Algorithms 3

Developing Algorithms on Sequences

• Specify the algorithm by giving its precondition
and postcondition as pictures.

• Draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition
§ The invariant is true at the beginning and at the end

• The four loop design questions
1. How does loop start (how to make the invariant true)?
2. How does it stop (is the postcondition true)?
3. How does the body make progress toward termination?
4. How does the body keep the invariant true?

11/26/19 Sequence Algorithms 4

Generalizing Pre- and Postconditions

• Dutch national flag: tri-color
§ Sequence of 0..n-1 of red, white, blue "pixels"
§ Arrange to put reds first, then whites, then blues

?
0 n

pre: b

reds whites blues
0 n

post: b

(values in 0..n-1 are unknown)

inv: b reds whites ? blues
0 j k l n

Make the red, white, blue
sections initially empty:
• Range i..i-1 has 0 elements
• Main reason for this trick
Changing loop variables turns
invariant into postcondition.

11/26/19 Sequence Algorithms 5

Generalizing Pre- and Postconditions
• Finding the minimum of a sequence.

• Put negative values before nonnegative ones.

? and n >= 0
0 n

pre: b

x is the min of this segment
0 n

post: b

(values in 0..n
are unknown)

? and n >= 0
0 n

pre: b

< 0
0 k n

post: b

(values in 0..n
are unknown)

>= 0

11/26/19 Sequence Algorithms 6

Generalizing Pre- and Postconditions
• Finding the minimum of a sequence.

• Put negative values before nonnegative ones.

? and n >= 0
0 n

pre: b

x is the min of this segment
0 n

post: b

x is min of this segment
0 j n

inv: b ?

(values in 0..n
are unknown)

(values in j..n
are unknown)

? and n >= 0
0 n

pre: b

< 0
0 k n

post: b

(values in 0..n
are unknown)

>= 0

11/26/19 Sequence Algorithms 7

Generalizing Pre- and Postconditions
• Finding the minimum of a sequence.

• Put negative values before nonnegative ones.

? and n >= 0
0 n

pre: b

x is the min of this segment
0 n

post: b

x is min of this segment
0 j n

inv: b ?

(values in 0..n
are unknown)

(values in j..n
are unknown)

? and n >= 0
0 n

pre: b

< 0
0 k n

post: b

(values in 0..n
are unknown)

>= 0

pre: j = 0
post: j = n

11/26/19 Sequence Algorithms 8

Generalizing Pre- and Postconditions
• Finding the minimum of a sequence.

• Put negative values before nonnegative ones.

? and n >= 0
0 n

pre: b

x is the min of this segment
0 n

post: b

x is min of this segment
0 j n

inv: b ?

(values in 0..n
are unknown)

(values in j..n
are unknown)

? and n >= 0
0 n

pre: b

< 0
0 k n

post: b

(values in 0..n
are unknown)

(values in k..j
are unknown)

>= 0
0 k j n

inv: b ? >= 0< 0

pre: j = 0
post: j = n

11/26/19 Sequence Algorithms 9

Generalizing Pre- and Postconditions
• Finding the minimum of a sequence.

• Put negative values before nonnegative ones.

? and n >= 0
0 n

pre: b

x is the min of this segment
0 n

post: b

x is min of this segment
0 j n

inv: b ?

(values in 0..n
are unknown)

(values in j..n
are unknown)

? and n >= 0
0 n

pre: b

< 0
0 k n

post: b

(values in 0..n
are unknown)

(values in k..j
are unknown)

>= 0
0 k j n

inv: b ? >= 0< 0

pre: j = 0
post: j = n

pre: k = 0,
j = n

post: k = j11/26/19 Sequence Algorithms 10

Partition Algorithm

• Given a sequence b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k • x is called the pivot value

§ x is not a program variable
§ denotes value initially in b[h]

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

11/26/19 Sequence Algorithms 11

Partition Algorithm

• Given a sequence b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k

1 2 3 1 3 4 5 6 8b
h i k

or

• x is called the pivot value
§ x is not a program variable
§ denotes value initially in b[h]

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

11/26/19 Sequence Algorithms 12

Partition Algorithm

• Given a sequence b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:
x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

11/26/19 Sequence Algorithms 13

Partition Algorithm

• Given a sequence b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:
x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

<= x x ? >= x
h i j k

inv: b

• Agrees with precondition when i = h, j = k+1
• Agrees with postcondition when j = i+1

11/26/19 Sequence Algorithms 14

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
_swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
_swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

11/26/19 Sequence Algorithms 15

partition(b,h,k), not partition(b[h:k+1])
Remember, slicing always copies the list!

We want to partition the original list

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
_swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
_swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

11/26/19 Sequence Algorithms 16

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
_swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
_swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

11/26/19 Sequence Algorithms 17

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
_swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
_swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

11/26/19 Sequence Algorithms 18

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

Partition Algorithm Implementation

def partition(b, h, k):
"""Partition list b[h..k] around a pivot x = b[h]"""
i = h; j = k+1; x = b[h]
invariant: b[h..i-1] < x, b[i] = x, b[j..k] >= x
while i < j-1:

if b[i+1] >= x:
Move to end of block.
_swap(b,i+1,j-1)
j = j - 1

else: # b[i+1] < x
_swap(b,i,i+1)
i = i + 1

post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

11/26/19 Sequence Algorithms 19

1 2 3 1 5 0 6 3 8
h i i+1 j k
<= x x ? >= x

1 2 1 3 5 0 6 3 8
h i i+1 j k

1 2 1 3 0 5 6 3 8
h i j k

1 2 1 0 3 5 6 3 8
h i j k

Dutch National Flag Variant

• Sequence of integer values
§ ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
§ Only rearrange part of the list, not all

?
h k

pre: b

< 0 = 0 > 0
h k

post: b

inv: b < 0 ? = 0 > 0
h t i j k

11/26/19 Sequence Algorithms 20

Dutch National Flag Variant

• Sequence of integer values
§ ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
§ Only rearrange part of the list, not all

?
h k

pre: b

< 0 = 0 > 0
h k

post: b

inv: b < 0 ? = 0 > 0
h t i j k

pre: t = h,
i = k+1,
j = k

post: t = i

11/26/19 Sequence Algorithms 21

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/26/19 Sequence Algorithms 22

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/26/19 Sequence Algorithms 23

-1 -2 3 -1 0 0 0 6 3
h t i j k

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/26/19 Sequence Algorithms 24

-1 -2 3 -1 0 0 0 6 3
h t i j k

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

-1 -2 -1 3 0 0 0 6 3
h t i j k

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1; j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

11/26/19 Sequence Algorithms 25

-1 -2 3 -1 0 0 0 6 3
h t i j k

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

-1 -2 -1 3 0 0 0 6 3
h t i j k

-1 -2 -1 0 0 0 3 6 3
h t j k

Will Finish This Next Week

11/26/19 Sequence Algorithms 26

