Linear Search

12/1/19

Binary Search

Exampleb |3 333344677

* Look for value v in sorted segment b[h..k]

h k
pre: b ‘ ? ‘ New statement of the
h i k invariant guarantees
post: b ‘ <v ‘ o—v ‘ that. S get leftmost
b ; i k position of v if found
inv: b ‘ <v ‘ ? \ >=v ‘
= ifvis3,setito0
h k .

ifvis4,setito5
if vis 5,setito7
if vis 8,setito 10

0123456789

Sorting: Arranging in Ascending Order

Insertion Sort:

h k
pre: b ‘ 9 ‘
h i k
post: b ‘ v not here ‘ v \ ? ‘
OR i
h k
b ‘ v not here ‘
h i k
inv: b ‘ v not here ? ‘
Binary Search
h k
pre: b‘ _7 ‘ New statement of the
h ! X | invariant guarantees
post: b ‘ <v \ >=v ‘ that we get leftmost
h i j k position of v if found
inv: b ‘ <v ‘ ? ‘ >=v ‘
i=h; j=k+1;
whilei I=j:

| Looking at b[i] gives linear search from left.

Looking at b[j-1] gives linear search from right.
| Looking at middle: b[(i+j)/2] gives binary search.

0 n 0 n

post: b __sorted

0 i n
inv: b‘ sorted ‘ ? ‘
i=0 0 i
while i < n: 2446675 |
| # Push b[i] down into its 0 € i
| # sorted position in b[0..i] 24456 6

| i=i+l

Insertion Sort: Moving into Position

i=0 :
0 i
il <n
push_down(b,i)
Li=ivl 0 i

N
W

def push_down(b, i):

| j=i 0
j=i i

e i>0: 24465067
while] > 0: T

2446 7
A

| | ifb[FlI>b[: lecture about lsts
0 i

24asad

| swapoL)
| j=j']-

Insertion Sort: Performance

def push_down(b, i):

e b[0..i-1]: 1 elements
"""Push value at position i into
sorted position in b[O0..i-1]""

* Worst case:
= i=0: 0 swaps
=i = i=1:1swap
while j > 0:
(11> b'[]]:‘ * Pushdown is in a loop
‘ swap(by-1)) = Called foriin0..n

j=j1 - - . .
= Insertion sort is | = i swaps each time
an n” algorithm

| Total Swaps: 0+ 1+2+3+ ... (n-1) = (n-1)*n/2 |

= i=2:2swaps

Algorithm “Complexity”

* Given: a list of length n and a problem to solve
* Complexity: rough number of steps to solve worst case
* Suppose we can compute 1000 operations a second:

Complexity | n=i0 | n=100 | =100 |
n 1s

001s 0.1s
nlogn 0016 032s 479s
n? 0.1s 10s 16.7 m
n? 1s 16.7 m 11.6d
2" 1s 4x101y 3x1020y

Major Topic in 2110: Beyond scope of this course

Partition Algorithm

¢ Given a list segment b[h..k] with some value x in b[h]:
h k

pre: b ‘ X ‘
¢ Swap elements of b[h. k] and store in j to truthify post:
h

B

i+l k
post: b ‘ <=x ‘x\ >=X ‘
h k
change: b |354162381
h i " ¢ x is called the pivot value

into bl121354638 = X is not a program variable
h i Kk = denotes value initially in b[h]

or b|123134568

12/1/19

Sorting: Changing the Invariant

0 n 0 n

Selection Sort:

0 i n First segment always

inv: b ‘ sorted, < bli..] ‘ >b[0..i-1] ‘ contains smaller values
i n
i=0 ‘24466‘899789‘
while i <n: i n
j = index of min of b[i..n-1] ‘24466‘799889‘
swap(b,i,j)
i=i+l

Selection sort also
is an n2 algorithm

Sorting with Partitions

e Given a list segment b[h..k] with some value x in b[h]:
h k
pre: b ‘ X ‘ 92 ‘

e Swap elements of b[h. k] and store in j to truthify post:
h il k

post: b ‘ <y ‘y‘ >=y ‘x‘ >=x ‘

Partition Recursively

Recursive partitions = sorting
= Called QuickSort (why???)

= Popular, fast sorting technique

10

Final Word About Algorithms

9
QuickSort
def quick_sort(b, h, k): * Worst Case:
""Sort the array fragment b[h. k]"" array already sorted
= Or almost sorted
if blh.k] has fewer than 2 elements: = nZin that case
return ¢ Average Case:
_ " array is scrambled
j= partition(b, b, k) = n log n in that case
blh..j-1] <= b[j] <= b[j+1.Xk] = Best sorting time!
Sort b[h.j-1] and b[j+1..k] h k
quick_sort (b, h, j-1)
h i i+l k
quick_sort (b, j+1, k) post: b >=x
11

e Algorithm:

= Step-by-step way to do something L
. . List Diagrams
= Not tied to specific language
* Implementation:
= An algorithm in a specific language
. Demo Code
= Many times, not the “hard part”

e Higher Level Computer Science courses:
= We teach advanced algorithms (pictures)

= Implementation you learn on your own

12

