
Sorting

Lecture 27

Announcements for This Lecture

Finishing Up Assignment 7

• Should be on bolt collisions
• Use weekend for final touches

§ Multiple lives
§ Winning or losing the game

• Also work on the extension
§ Add anything you want
§ ONLY NEED ONE
§ Ask on Piazza if unsure
§ All else is extra credit

12/5/19 2Sorting

• Submit a course evaluation
§ Will get an e-mail for this
§ Part of “participation grade”

• Final: Dec 17th 9-11:30am
§ Study guide is posted
§ Announce reviews on Tues.

• Conflict with Final time?
§ Submit to conflict to CMS

by next Tuesday!

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].

12/5/19 Sorting 3

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].
• Better: Store an integer in i to truthify result condition post:

post: 1. v is not in b[h..i-1]
2. i = k OR v = b[i]

12/5/19 Sorting 4

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].
• Better: Store an integer in i to truthify result condition post:

post: 1. v is not in b[h..i-1]
2. i = k OR v = b[i]

?
h k

pre: b

v not here v ?

h i k
post: b

12/5/19 Sorting 5

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].
• Better: Store an integer in i to truthify result condition post:

post: 1. v is not in b[h..i-1]
2. i = k OR v = b[i]

v not here

i
h k

?
h k

pre: b

v not here v ?

h i k
post: b

b

OR

12/5/19 Sorting 6

Linear Search

v not here

i
h k

?
h k

pre: b

v not here v ?

h i k
post: b

b

OR

v not here ?

h i k
inv: b

12/5/19 Sorting 7

Linear Search

def linear_search(b,v,h,k):
"""Returns: first occurrence of v in b[h..k-1]"""
Store in i index of the first v in b[h..k-1]
i = h

invariant: v is not in b[h..i-1]
while i < k and b[i] != v:

i = i + 1

post: v is not in b[h..i-1]
i >= k or b[i] == v
return i if i < k else -1

Analyzing the Loop
1. Does the initialization
make inv true?

2. Is post true when inv is
true and condition is false?

3. Does the repetend make
progress?

4. Does the repetend keep the
invariant inv true?

12/5/19 Sorting 8

Binary Search

• Vague: Look for v in sorted sequence segment b[h..k].

12/5/19 Sorting 9

Binary Search

• Vague: Look for v in sorted sequence segment b[h..k].
• Better:

§ Precondition: b[h..k-1] is sorted (in ascending order).
§ Postcondition: b[h..i-1] < v and v <= b[i..k]

• Below, the array is in non-descending order:

? sorted
h k

pre: b

< v

h i k
post: b >= v

12/5/19 Sorting 10

Binary Search

• Look for value v in sorted segment b[h..k]

12/5/19 Sorting 11

?
h k

pre: b

< v

h i k
post: b

New statement of the
invariant guarantees
that we get leftmost
position of v if found

>= v

< v

h i j k
inv: b >= v?

3 3 3 3 3 4 4 6 7 7

0 1 2 3 4 5 6 7 8 9
Example b

h k
§ if v is 3, set i to 0
§ if v is 4, set i to 5
§ if v is 5, set i to 7
§ if v is 8, set i to 10

Binary Search

• Vague: Look for v in sorted sequence segment b[h..k].
• Better:

§ Precondition: b[h..k-1] is sorted (in ascending order).
§ Postcondition: b[h..i-1] < v and v <= b[i..k]

• Below, the array is in non-descending order:

?
h k

pre: b

< v

h i k
post: b

Called binary search
because each iteration

of the loop cuts the
array segment still to
be processed in half

>= v

< v

h i j k
inv: b > v?

12/5/19 Sorting 12

Binary Search

12/5/19 Sorting 13

i = h; j = k+1;
while i != j:

New statement of the
invariant guarantees
that we get leftmost
position of v if found

Looking at b[i] gives linear search from left.
Looking at b[j-1] gives linear search from right.
Looking at middle: b[(i+j)/2] gives binary search.

?
h k

pre: b

< v

h i k
post: b >= v

< v

h i j k
inv: b >= v?

Sorting: Arranging in Ascending Order

?
0 n

pre: b sorted
0 n

post: b

sorted
0 i n

inv: b ?

2 4 4 6 6 7 5
0 i

2 4 4 5 6 6 7
0 i

Insertion Sort:

i = 0
while i < n:

Push b[i] down into its
sorted position in b[0..i]
i = i+1

12/5/19 14Sorting

Insertion Sort: Moving into Position
i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

12/5/19 Sorting 15

2 4 4 6 6 7 5
0 i

swap shown in the
lecture about lists

Insertion Sort: Moving into Position
i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

12/5/19 Sorting 16

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

swap shown in the
lecture about lists

Insertion Sort: Moving into Position
i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

12/5/19 Sorting 17

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

2 4 4 6 5 6 7
0 i

swap shown in the
lecture about lists

Insertion Sort: Moving into Position
i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

12/5/19 Sorting 18

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

2 4 4 6 5 6 7
0 i

2 4 4 5 6 6 7
0 i

swap shown in the
lecture about lists

The Importance of Helper Functions

i = 0
while i < n:

push_down(b,i)
i = i+1

def push_down(b, i):
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

i = 0
while i < n:

j = i
while j > 0:

if b[j-1] > b[j]:
temp = b[j]
b[j] = b[j-1]
b[j-1] = temp

j = j -1
i = i +1

12/5/19 Sorting 19

VS

Can you understand
all this code below?

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0..i-1]"""
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

• b[0..i-1]: i elements
• Worst case:

§ i = 0: 0 swaps
§ i = 1: 1 swap
§ i = 2: 2 swaps

• Pushdown is in a loop
§ Called for i in 0..n
§ i swaps each time

12/5/19 Sorting 20

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2 = (n2-n)/2

Insertion Sort: Performance

def push_down(b, i):
"""Push value at position i into
sorted position in b[0..i-1]"""
j = i
while j > 0:

if b[j-1] > b[j]:
swap(b,j-1,j)

j = j-1

• b[0..i-1]: i elements
• Worst case:

§ i = 0: 0 swaps
§ i = 1: 1 swap
§ i = 2: 2 swaps

• Pushdown is in a loop
§ Called for i in 0..n
§ i swaps each time

12/5/19 Sorting 21

Total Swaps: 0 + 1 + 2 + 3 + … (n-1) = (n-1)*n/2 = (n2-n)/2

Insertion sort is
an n2 algorithm

Algorithm “Complexity”
• Given: a list of length n and a problem to solve
• Complexity: rough number of steps to solve worst case
• Suppose we can compute 1000 operations a second:

Complexity n=10 n=100 n=1000
n 0.01 s 0.1 s 1 s

n log n 0.016 s 0.32 s 4.79 s
n2 0.1 s 10 s 16.7 m
n3 1 s 16.7 m 11.6 d
2n 1 s 4x1019 y 3x10290 y

Major Topic in 2110: Beyond scope of this course
12/5/19 22Sorting

Sorting: Changing the Invariant

?
0 n

pre: b sorted
0 n

post: b

sorted
0 i n

inv: b ?

Insertion Sort:

i = 0
while i < n:

Find minimum in b[i..]
Move it to position i
i = i+1

12/5/19 23Sorting

sorted, ≤ b[i..]
0 i n

inv: b ≥ b[0..i-1]

Selection Sort:

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

First segment always
contains smaller values

Sorting: Changing the Invariant

?
0 n

pre: b sorted
0 n

post: b

sorted
0 i n

inv: b ?

Insertion Sort:

i = 0
while i < n:

Find minimum in b[i..]
Move it to position i
i = i+1

12/5/19 24Sorting

sorted, ≤ b[i..]
0 i n

inv: b ≥ b[0..i-1]

Selection Sort:
First segment always
contains smaller values

A: Slower
B: About the same
C: Faster
D: I don’t know

Compared to insertion sort,
selection sort is

Sorting: Changing the Invariant

?
0 n

pre: b sorted
0 n

post: b

sorted
0 i n

inv: b ?

Insertion Sort:

i = 0
while i < n:

j = index of min of b[i..n-1]
swap(b,i,j)
i = i+1

12/5/19 25Sorting

sorted, ≤ b[i..]
0 i n

inv: b ≥ b[0..i-1]

Selection Sort:

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

First segment always
contains smaller values

Selection sort also
is an n2 algorithm

This is n steps

Partition Algorithm

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:

12/5/19 Sorting 26

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k

1 2 3 1 3 4 5 6 8b
h i k

or

• x is called the pivot value
§ x is not a program variable
§ denotes value initially in b[h]

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

Sorting with Partitions

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:

12/5/19 Sorting 27

x ?

h k
pre: b

h i i+1 k
post: b x >= x<= xy ?y >= y<= y

Partition Recursively Recursive partitions = sorting
§ Called QuickSort (why???)
§ Popular, fast sorting technique

QuickSort

def quick_sort(b, h, k):

"""Sort the array fragment b[h..k]"""

if b[h..k] has fewer than 2 elements:

return

j = partition(b, h, k)

b[h..j–1] <= b[j] <= b[j+1..k]

Sort b[h..j–1] and b[j+1..k]

quick_sort (b, h, j–1)

quick_sort (b, j+1, k)

• Worst Case:
array already sorted
§ Or almost sorted
§ n2 in that case

• Average Case:
array is scrambled
§ n log n in that case
§ Best sorting time!

12/5/19 Sorting 28

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

Final Word About Algorithms

• Algorithm:
§ Step-by-step way to do something
§ Not tied to specific language

• Implementation:
§ An algorithm in a specific language
§ Many times, not the “hard part”

• Higher Level Computer Science courses:
§ We teach advanced algorithms (pictures)
§ Implementation you learn on your own

12/5/19 Sorting 29

List Diagrams

Demo Code

