
1

Types of Testing

Black Box Testing

• Function is “opaque”
§ Test looks at what it does
§ Fruitful: what it returns
§ Procedure: what changes

• Example: Unit tests
• Problems:

§ Are the tests everything?
§ What caused the error?

White Box Testing

• Function is “transparent”
§ Tests/debugging takes

place inside of function
§ Focuses on where error is

• Example: Use of print
• Problems:

§ Much harder to do
§ Must remove when done

Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of n in form 'last-name, first-name' """
end_first = n.find(' ')
print(end_first)
first = n[:end_first]
print('first is '+str(first))
last = n[end_first+1:]
print('last is '+str(last))
return last+', '+first

Print variable after
each assignment

Optional: Annotate
value to make it
easier to identify

How to Use the Results

• Goal of white box testing is error location
§ Want to identify the exact line with the error
§ Then you look real hard at line to find error
§ What you are doing in lab this week

• But similar approach to black box testing
§ At each line you have expected print result
§ Compare it to the received print result
§ Line before first mistake is likely the error

Structure vs. Flow

Program Structure

• Order code is presented
§ Order statements are listed
§ Inside/outside of function
§ Will see other ways…

• Defines possibilities over
multiple executions

Program Flow

• Order code is executed
§ Not the same as structure
§ Some statements duplicated
§ Some statements skipped

• Defines what happens in a
single execution

Have already seen this
difference with functions

Conditionals: If-Statements

Format
if expression :

statement
…
statement

Example
Put x in z if it is positive
if x > 0:

z = x

Execution:

If expression is True, execute all statements indented underneath

Indent

Conditionals: If-Else-Statements

Format
if expression :

statement
…

else:
statement
…

Example
Put max of x, y in z
if x > y:

z = x
else:

z = y

Execution:
If expression is True, execute all statements indented under if.
If expression is False, execute all statements indented under else.

2

Conditionals: “Control Flow” Statements

if b :

s1 # statement
s3

if b :
s1

else:
s2

s3

s1

s3

s2

b

s1

s3

b Branch Point:
Evaluate & Choose

Statement: Execute

Flow
Program only
takes one path
each execution

Program Flow and Call Frames

def max(x,y):
"""Returns: max of x, y"""
simple implementation

1 if x > y:
2 return x
3 return y

max(0,3):

max

x 0

y 3

Frame sequence
depends on flow

Skips line 2

RETURN

3

Testing and Code Coverage

• Typically, tests are written from specification
§ This is because they should be written first
§ You run these tests while you implement

• But sometimes tests leverage code structure
§ You know the control-flow branches
§ You want to make sure each branch is correct
§ So you explicitly have a test for each branch

• This is called code coverage

Watches vs. Traces

Watch

• Visualization tool
§ Often print/log statement
§ May have IDE support

• Looks at variable value
§ Anywhere it can change
§ Often after assignment

Trace

• Visualization tool
§ Often print/log statement
§ May have IDE support

• Looks at program flow
§ Anywhere it can change
§ Before/after control

Traces and Functions

print('before if')
if x > y:

print('if x>y')
z = y
print(z)

else:
print('else x<=y')
z = y
print(z)

print('after if')

Watches Traces

Example: flow.py

Conditionals: If-Elif-Else-Statements

Format
if expression :

statement
…

elif expression :
statement
…

…
else:

statement
…

Notes on Use

• No limit on number of elif
§ Can have as many as want
§ Must be between if, else

• The else is always optional
§ if-elif by itself is fine

• Booleans checked in order
§ Once it finds first True,

skips over all others
§ else means all are false

