The CS 1110 Declassified Survival Guide

Will Xiao
Spring 2019

1 Introduction

Welcome to CS 1110! We're happy that you decided to join us. Whether this is
your first foray into the world of computer science, or you've done basic coding
before, we hope you’ll find the course as enjoyable as we do. Below, you will
find tips on how to succeed and thrive in the upcoming weeks.

2 How to Study

Learning how to code is a lot like learning a new language. But instead of learn-
ing Spanish, French, Mandarin, etc, you're learning how to speak the language
of a computer. Instead of writing essays to convey your ideas to other people,
you write code that convey your ideas/commands to the computer, which the
computer will then execute.

As such, you can treat CS much like you can a foreign language class. You
should devote a little bit of time every day to learning and reviewing the ma-
terial, outside of lecture/labs/assignments. If you don’t speak a new language
you’re trying to learn for over a week, your skills are going to wither and you’re
going to forget a lot of the vocabulary/semantics. It’s very much the same with
programming. Try coming up with some examples of functions on your own
using the topics you just learned in class, and try implementing them yourself.
After you finish each weekly lab, take some time and sit down and think about
why the code that you wrote down worked. Analyze it line by line. The better
and more concisely you can explain it, the better grasp you have of the ma-
terial. It’s easy to sit in lecture and go ” Ok, that makes sense”, but it helps
immensely if you can explain why everything makes sense on your own, without
any guidance. As the course moves on to more abstract topics, being able to
understand explain them clearly and concisely is key.

Also, going to office/consulting hours consistently is a great way to keep up with
the course and make sure you definitely know what you're doing. Try to make
it a habit (e.g. once a week or so). Even if you don’t have questions yourself,
it can be helpful to listen to other people’s questions and the explanations they
receive. This will especially come in handy in the days before the assignments



are due and office hours become incredibly packed- it becomes very difficult and
frustrating to get help then. If you start assignments early, and come often to
make sure you know how the concepts work, you will be able to get through the
assignments and the course relatively stress-free.

3 How to Code Effectively

Coding is an art, much like writing. When putting together a paper, you can
write a paragraph that gets the meaning across in a very roundabout way, or
you can write a single, direct sentence that says the exact same thing. Writing
code is very much the same. With that said, here are some tips.

3.1 How to Approach Writing Code

The best way to approach writing code is to break it down and reason about it
in English. If you had to give a step by step process in English, describing how
you would complete the task at hand given in the specification, how would you
do it?! During this period, forget all about the fact that you’re going to write
code to implement the function- just reason about how you would go about it. If
any of your descriptions seem very high-level /not easily implementable, continue
further and break down that description into more directions/instructions that
can be implemented easily. Once you have that done, then, and only then,
should you start typing in the actual code. There is no point in trying to code
without reasoning about the task first- it’s like driving to a specific destination,
but you have no idea how to get there. You’ll probably drive around in circles/in
the wrong direction for a while before you reach your destination. Same thing
applies here.

As an example, say I wanted to write a function that takes in a string/text and
returns the portion of that string that appears before the first letter 'e’. If I were
to give a high level English description of this code, it might look something
like:

1. Find the position of the first instance of ’e’ in that string.
2. Get the part of the string before that position.
3. Return that substring.

Now that I've done that, it’s much easier to actually write the code. It would
look something like below. Note how I’ve made each separate step from above
into its own line of code. When you first start learning how to code, separating
each step into its own separate line can make things easier to keep track of and
reason about.

IWe call this step-by-step description of a process an algorithm in computer science.



def before_e(s):

Returns: The substring of s before the first ’'e’.

Parameter s: The string to get the substring from

Precondition: s is a string with at least one ’e’.
nmnwn

e_pos = s.index(’e’)
result = s[:e_pos]
return result

As an aside, there’s always more than one way to implement any given function/task-
don’t get discouraged if you can’t figure out how to do it a specific way. This

is especially important to keep in mind when you’re trying to reason through a
possible implementation of a function and your idea seems incredibly convoluted

and long-winded. Maybe just try taking a break, and then coming back and
looking at the problem from a different angle!

3.2 Making Code Elegant

In CS 1110, it doesn’t matter how you implement your code. As long as it does
what the specification says it should, you will receive full credit. That being
said, the more simple and elegant your code is, the easier it will be for you to
understand, and your graders will thank you for it (hint hint). If nothing else,
elegant and pretty code is pleasing to look at.

3.2.1 Example 1: Boolean Logic

Let’s start with a simple example, using boolean logic. Let’s say I have a
variable; call it isPositive. Let it store a bool representing whether a certain
number is positive or not (if it is True, then the number is positive, and vice
versa). If I wanted to do something based on the value of isPositive, I could
say:

if isPositive == True:

do something...

However, I could write this more cleanly, taking advantage of boolean logic, as:
if isPositive:
do something...
This works is because if isPositive is True, then the expression isPositive ==
True is always going to evaluate to True, so you’re just replacing one True with
another True. A similar analysis follows in the case where isPositive is False.
Instead of saying isPositive == False, you could simply say not isPositive.

For a more concrete explanation of the difference between the two above state-
ments, it is similar to the difference between saying ”If the proposition that the
number is positive is true, then do something.” and ”If the number is positive,
then do something.” In the end, both convey the same meaning. Which one is
more pleasing to read and comprehend?



3.2.2 Example 2: Using Library Functions

As another example of how I could simplify code, suppose I wanted to find the
larger of two numbers a and b. If I wrote the code for this myself, it might look
something like:

def maximum(a, b):
nnwn

Returns: The larger of the two numbers a and b.

Parameter a: One of the numbers to compare.
Precondition: a is a number (int or float).

Parameter b: The other number to compare.
Precondition: b is a number (int or float).

if a < b:
return b
else:
return a

While the above code works, and it would still get the job done, I could write
this much more concisely and clearly as:

max (a, b)

where max is the built-in Python function that returns larger of the two numbers
a and b that you provide it.

See? So much cleaner and easy to understand. In general, if you're trying to
do something with a built-in type (like strings, lists, etc), there’s probably a
library function or feature in Python that does that already. Take advantage of
them- it’ll make your code simpler and easier to read.

There are other ways to simplify and clean up your code besides understanding
boolean logic or using the provided functions. If you go on to take CS 2110,
you’ll learn many other ways to make your code not only clean, but also efficient.
I won’t go into most of them here, but if you're interested, you’'re more than
welcome to ask a staff member on how to improve your code- we’ll be happy to
help.

4 Extra Resources

If you’re looking for extra resources past those given in class, here are some I
recommend:

e Python API:
https://docs.python.org/3.6/1library/
As annoying as it can be to read instruction manuals, this is one manual
that you don’t want to toss to the side immediately after opening the
box. The Python API gives you descriptions of all the built-in features of


https://docs.python.org/3.6/library/

Python, including functions, modules, etc. Have this link handy- it’ll tell
you exactly what Python has to offer, and what you have to do yourself
(this goes back to using built-in Python code to make your life easier /code
more elegant)! While the table of contents may look scary, we won’t be
covering most of it in this class.

e CodingBat:

https://codingbat.com/python

Contains many different functions that you can work on to practice cod-
ing/use as drills. Their Python selection is somewhat limited, though. If
you move over to the Java side, you’ll see that there are more- I would
recommend, if you’re looking for more practice, to implement those func-
tions in Python (such as in the Python Tutor) and then checking there by
yourself (it gives you good practice writing test cases, too)!

e Map of Computer Science:
https://www.youtube.com/watch?v=3zJ46YA_RaA
While not explicitly related to the course material, this video provides a
fascinating and engaging overview as to what computer science entails and
to what is possible. I highly encourage you watch it, especially those of
you who plan to pursue further CS courses after this semester.

5 Words of Warning

There are some things you should keep in mind while going through the course:

5.1 Consulting Hours

With just about 500 students in the course, office and consulting hours can
potentially get incredibly busy, especially in the days leading up to assignment
deadlines later on in the course. Start the assignment early, within the first few
days of it being released, and beat the rush that will inevitably come two to three
days before it’s due. Waiting generally won’t help too much, as the assignments
are usually released after all the material you need to know to complete them
has been gone over already in lecture.

5.2 StackOverflow

Online programming forums like StackOverflow can be both a blessing and
a curse. It can be a helpful resource if you're stuck on a small detail and
need to figure something out really quickly. However, things start getting a
little hazy when you rely on it for bigger things, like how to implement larger
functions/pieces of code. The main issue we have with the site is that it can
lead to Academic Integrity violations if you're not careful. Sometimes, you'll be
able to find code on the site, or GitHub, that is quite helpful for implementing
something on one of the assignments. However, if you add it to your code


https://codingbat.com/python
https://www.youtube.com/watch?v=SzJ46YA_RaA

without citing, and some other groups do too, we will catch you (Moss, our
AT detection program, is very good at noticing these unusual similarities). In
general, if you're just looking to do something small, like '"How do I do X in
Python?’, it’s fine. Don’t try anything much larger though, like 'How do I
implement this function?’

5.3 Codecademy

If any of you have tried to teach yourself programming in the past (possibly
in preparation for this class), chances are you’ve used Codecademy or a similar
resource to teach yourself the basics of coding. While these online platforms do
teach you the basics of how to get off the ground with a language and get you
up and running, they rarely (if ever) go deeper into the computer science theory
and fundamentals of why things work the way they do. Codecademy teaches
syntax. CS 1110 teaches computer science theory and good coding habits. If you
do plan to use these resources to supplement your learning during the semester,
please keep this in mind- always make sure to go back and review the theory on
why things are that specific way.

Best of luck in the course! If you have any questions, feel free to talk to any of
us on the course staff; we’ll be happy to help!



	Introduction
	How to Study
	How to Code Effectively
	How to Approach Writing Code
	Making Code Elegant
	Example 1: Boolean Logic
	Example 2: Using Library Functions


	Extra Resources
	Words of Warning
	Consulting Hours
	StackOverflow
	Codecademy


