
1

Lecture 6:
Specifications & Testing

(Sections 4.9, 9.5)

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,

S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp

Revisions made during/after lecture appear in orange

• Download code from lecture and experiment with it—run,
modify, run again, …

• Assignment 1 will be out around Friday

 Will have over a week to do it

 Can choose to work with one partner and together submit one
assignment

 Can revise and resubmit after getting grading feedback

• Starting next week: optional 1-on-1 with a staff member to
help just you with course material. Sign up for a slot on CMS
under “SPECIAL: one-on-ones“.

• Ed Discussions: you can post error msgs but do not post any
amount of your code (answers)

Announcements

4

Recall the Python API

https://docs.python.org/3/library/math.html

Function
name

Possible arguments

What the function
evaluates to

Module

5

• This is a specification

 How to use the function

 Not how to implement it

• Write them as docstrings

Anatomy of a Specification

def greet(name):

"""Prints a greeting to person name

followed by conversation starter.

<more details could go here>

name: the person to greet

Precondition: name is a string"""

print('Hello '+name+'!')

print('How are you?')

6

Short description,
followed by blank line

As needed, more detail in
1 (or more) paragraphs

Parameter description

Precondition specifies
assumptions we make
about the arguments

Anatomy of a Specification

def get_campus_num(phone_num):
"""Returns the on-campus version
of a 10-digit phone number.

Returns: str of form "X-XXXX"

phone_num: number w/area code
Precondition: phone_num is a 10
digit string of only numbers"""
return phone_num[5]+"-"+phone_num[6:10]

7

Short description,
followed by blank line

Information about
the return value

Parameter description

Precondition specifies
assumptions we make
about the arguments

A Precondition Is a Contract

• Precondition is met: The
function will work!

• Precondition not met?
Sorry, no guarantees…

Software bugs occur if:
• Precondition is not

documented properly
• Function use violates the

precondition

>>> get_campus_num(“6072554444”)

‘5-4444’

>>> get_campus_num(“6072531234”)

‘3-1234’

>>> get_campus_num(6072531234)
Traceback (most recent call last):

File "<stdin>", line 1, in<module>

File "/Users/Daisy/lec6examples.py", line 14, in
get_campus_num

return phone_num[5]+"-"+phone_num[6:10]

TypeError: 'int' object is not subscriptable

>>> get_campus_num(“607-255-4444”)

‘5-5-44’
8

Precondition violated:
error message!

Precondition violated:
no error message!

http://www.cs.cornell.edu/courses/cs1110/2021sp
https://docs.python.org/3/library/math.html

2

NASA Mars Climate Orbiter

10

Source: NASA

Sources: Wikipedia & CNN

“NASA lost a $125 million
Mars orbiter because a

Lockheed Martin
engineering team used

English units of
measurement while the
agency's team used the

more conventional metric
system for a key

spacecraft operation...”
lost September 23, 1999

Preconditions Make Expectations Explicit

11

In American terms:

Preconditions help assign
blame.

Something went wrong.

Did you use the function wrong?

OR

Was the function implemented/specified wrong?

Basic Terminology

• Bug: an error in a program. Expect them!
 Conceptual & implementation

• Debugging: the process of finding bugs and
removing them

• Testing: the process of analyzing and running a
program, looking for bugs

• Test case: a set of input values, together with
the expected output

12

Get in the habit of writing test cases for a function
from its specification

– even before writing the function itself!

Test cases help you find errors

def vowel_count(word):

"""Returns: number of vowels in word.

word: a string with at least one letter and only letters"""

pass # nothing here yet!

13

Some Test Cases

 vowel_count('Bob’)
Expect: 1

 vowel_count('Aeiuo’)
Expect: 5

 vowel_count('Grrr’)
Expect: 0

More Test Cases

 vowel_count('y’)
Expect: 0? 1?

 vowel_count('Bobo’)
Expect: 1? 2?

Test Cases can help you find errors in the
specification as well as the implementation.

Representative Tests

• Cannot test all inputs

 “Infinite” possibilities

• Limit ourselves to tests
that are representative

 Each test is a significantly
different input

 Every possible input is
similar to one chosen

• An art, not a science

 If easy, never have bugs

 Learn with much practice

14

Representative Tests for
vowel_count(w)

• Word with just one vowel

 For each possible vowel!

• Word with multiple vowels

 Of the same vowel

 Of different vowels

• Word with only vowels

• Word with no vowels

Representative Tests Example

def last_name_first(full_name):

"""Returns: copy of full_name in form <last-name>, <first-name>

full_name: a string with the form <first-name> <last-name>
with one or more blanks between the two names"""

space_index = full_name.index(' ')

first = full_name[:space_index]

last = full_name[space_index+1:]

return last+', '+first

Representative Tests:
• last_name_first(‘Katherine Johnson’) Expects: ‘Johnson, Katherine'

• last_name_first(‘Katherine Johnson’) Expects: ‘Johnson, Katherine'

16

Look at
precondition when
choosing tests

3

• Right now to test a function, we:

 Start the Python interactive shell

 Import the module with the function

 Call the function several times to see if it works right

• Super time consuming! 

 Quit and re-enter python every time we change module

 Type and retype…

• What if we wrote a script to do this ?!

Motivating a Unit Test

17

cornellasserts module

• Contains useful testing functions

• To use:

 Download from course website (one of today’s
lecture files)

 Put in same folder as the files you wish to test

18

def assert_equals(expected, received):
"""Quit program if `expected` and `received` differ"""

• A unit test is a script that tests another module. It:

 Imports the module to be tested (so it can access it)

 Imports cornellasserts module (supports testing)

 Defines one or more test cases that each includes:

• A representative input

• The expected output

 Test cases call a cornellasserts function:

Unit Test: A Special Kind of Script

19

Testing last_name_first(full_name)

import name_phone # The module we want to test

import cornellasserts # Module that supports testing

First test case

result = name_phone.last_name_first(‘Katherine Johnson')

cornellasserts.assert_equals(‘Johnson, Katherine', result)

Second test case

result = name_phone.last_name_first('Katherine Johnson')

cornellasserts.assert_equals('Johnson, Katherine', result)

print(‘All tests of the function last_name_first passed’) 20

Actual output Input

Expected output Quits Python if actual and
expected output not equal

Prints only if
no errors

Organizing your Test Cases

• We often have a lot of test cases

 Common at (good) companies

 Need a way to cleanly organize them

Idea: Bundle all test cases into a single test!

 One high level test for each function you test

 High level test performs all test cases for function

 Also uses some print statements (for feedback)

21

One Test to Rule them All

def test_last_name_first():

"""Calls all the tests for last_name_first"""

print('Testing function last_name_first’)

Test Case 1

result = name.last_name_first('Katherine Johnson')

cornellasserts.assert_equals('Johnson, Katherine', result)

Test Case 2

result = name.last_name_first('Katherine Johnson')

cornellasserts.assert_equals('Johnson, Katherine', result)

Execution of the testing code

test_last_name_first()

print(‘All tests of the function last_name_first passed’)

No tests happen if you
forget to call the function

22

Still need to import modules
name_phone, cornellasserts

Put all
test

cases
inside
one

function

4

Debugging with Test Cases (Question)
def last_name_first(full_name):

"""Returns: copy of full_name in the form <last-name>, <first-name>

full_name: has the form <first-name> <last-name>

with one or more blanks between the two names""“

#get index of space after first name

space_index = full_name.index(' ')

#get first name

first = full_name[:space_index]

#get last name

last = full_name[space_index+1:]

#return “<last-name>, <first-name>”

return last+', '+first

• last_name_first('Katherine Johnson’) gives 'Johnson, Katherine'

• last_name_first('Katherine Johnson’) gives ' Johnson, Katherine'

Which line is “wrong”?

A: Line 1

B: Line 2

C: Line 3

D: Line 4

E: I do not know

1

2

3

4

23

How to debug

Do not ask:

“Why doesn’t my code do what I want it to do?”

Instead, ask:

“What is my code doing?”

Two ways to inspect your code:

1. Step through your code, drawing pictures (or use
python tutor if possible)

2. Use print statements to reveal intermediate program
states—variable values

25

Take a look in the python tutor!

def last_name_first(full_name):

<snip out comments for ppt slide>

get index of space

space_index = full_name.index(' ')

get first name

first = full_name[:space_index]

get last name

last = full_name[space_index+1:]

return “<last-name>, <first-name>”

return last+', '+first

last_name_first(“Katherine Johnson”) 26

Pay attention to:
• Code relevant to

the failed test
case

• Code you weren’t
100% sure of as
you wrote it

Using print statement to debug

def last_name_first(full_name):

get index of space

space_index = full_name.index(' ')

print('space_index = '+ str(space_index))

get first name

first = full_name[:space_index]

print('first = '+ first)

get last name

last = full_name[space_index+1:]

print('last = '+ last)

return “<last-name>, <first-name>”

return last+', '+first

27

How do I print this?

Sometimes this is
your only option,
but it does make
a mess of your

code, and
introduces cut-n-

paste errors.

