N SR WA RS SN S P e

http://www.cs.cornell.edu/courses/cs1110/2021sp

AR WL W A @7

Lecture 15:

Recursion
(Sections 5.8-5.10)

Cs 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

Recursion

Announcements

* Not new python, but a new way of organizing
thinking/algorithm
* Important in CS—CS majors will see it in action
all 4 years
* Introduction only in CS1110, over 2 lectures
1. Intro, examples, “divide & conquer”
2. Visualization, different ways to “divide”, + objects
» Hard work on understanding call frames and the
call stack will now pay off!

Recursion

» Assignment 2 regrade request due Friday
» New topic today—recursion—takes time to learn
= Post-lecture activities

= Next lab to be released a little earlier than usual so
that you can think about it and ask questions during
lab. Not earlier due date—just more time to think

Recursion

Recursive Function:
A function that calls itself’

Two parts to every recursive function:
1. A simple case: can be solved easily
2. A complex case: can be made simpler (and simpler,
and simpler... until it looks like the simple case)

Recursive Function:
A function that calls itself

An example in mathematics: factorial
* Non-recursive definition:
nl=nXn-1 X ..X2X]

&—v—l
(n-1)!
* Recursive definition:
n!=n(n-1)!
0r'=1 Details in pre-

lecture videos

Think about opening a set of Russian
dolls as a “problem.” Which is the
simpler case,

the case where the doll has a seam and
another doll inside of it, or

the case where the doll has no seam
@ and no doll inside of it?

http://www.cs.cornell.edu/courses/cs1110/2021sp

Russian Dolls!
Global Space Heap Space

d id

a2 name[_"Dritry" |
hasSeam

innerDoll

@ Russian Dolls!

©

_—
has&am:]
innerDolt| |

"Catherine"

id2
name[“Catherine"

. . hasSeam| True |
d1 = russian.Doll("Dmitry", None) innertot [|

" d2 = russian.Doll("Catherine", d1) "

import russian import russian

def open_doll(d):

""“Input: a Russian Doll Play with the code
Opens the Russian Doll d ™ e Download modules russian.py, playWithDolls.py
print("My name is "+ d.name) e Read playWithDolls.py; then run it as a script.
if d hasSeam ¢ Modify last statement and run script again:
inner = d.innerDoll = open_doll(d3)
open_doll(inner) ¢ Modify last statement again and run script again :
else: = open_doll(d1)
print("That's it!") * Do you understand the result?
idx ¢ Use Python Tutor to visualize (more next lecture)
name:]
hasSeam| |
innerDoll[| 18

Recursion: Examples Blast Off!

* Russian Dolls
« Blast Off!
» Factorial

ob

blast_off(5) # must be a non-negative int

What is the simple case
that can be solved easily?

’

* Count number of ‘e’s

* positiven>1
* nisl
BLASTOFFl [+ nisO

E blast_off(0)
BLAST OFF!

= N W N~ O

» Deblank — removing spaces from a string

Blast Off!

A Mathematical Example: Factorial

def blast_off(n):
""Input: a non-negative int
Counts down from n to Blast-Off!

Factorial as a Recursive Function

* Non-recursive definition:
nl=nXn-lX .. 6 X2X1
=n(-1 X ..X2X1)

* Recursive definition:
n!=n(n-1)! forn>0

0!l=1 Base case

Recursive case

Details in pre-
i lecture videos

Recursion

Recursion vs Iteration

def factorial(n):
"""Returns: factorial of n.

* n!=n (n-1)!
0!=1

return n*factorial(n-1)

What happens if there is no base case?

Pre:n= 0 anint™"
if n==0:
| return1

Recursion 27

Recursion is great for Divide and Conquer

* Recursion is provably equivalent to iteration
= [teration includes for-loop and while-loop (later)
= Anything can do in one, can do in the other

* But some things are easier with recursion
= And some things are easier with iteration

+ Will not teach you when to choose recursion
= That’s for upper level courses

* We just want you to understand the technique

Divide and Conquer Example

28

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1 data 2

- AN
Y Y

Solve Problem P Solve Problem P

\ﬁ(_/

Combine Answer!

Count the number of 'e's in a string:

ple|n|n|e

One 'e' One 'e'

Divide and Conquer Example

Count the number of 'e's in a string:

pleln|n|e

Divide and Conquer

Zero'e's Two'e's

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
= Some data cannot be broken up
= Have to compute this answer directly
2. Decide how to break up your data
= Both “halves” should be smaller than whole
= Often no wrong way to do this (next lecture)
3. Decide how to combine your answers
= Assume the smaller answers are correct

= Combine them to give the aggregate answer

Divide and Conquer Example

Goal: Solve really big problem P

Idea: Split into simpler problems, solve, combine

3 Steps:
1. Decide what to do for simple cases
2. Decide how to break up the task

3. Decide how to combine your work

Divide and Conquer Example

def num_es(s): “Short-cut” for
"""Returns: # of 'e'sin ™" .
#1. Handle small data if s[0] =="e"
ifs==" return1
| return 0 N else:
elif len(s) == 1: - return 0
| return1if s[0] =="¢' else 0

42

def num_es(s):
‘ """ Returns: # of 'e'sin s
#1. Handle small data

2. Break into two parts

‘ # 3. Combine the result

Divide and Conquer Example

def num_es(s):

|
2. Breakinto two parts s[0] s[t]

left = num_es(s[0])
right = num_es(s[1:]) E HH

| 0 2

43

Divide and Conquer Example

def num_es(s):
""Returns: # of 'e'sin s

s[0] s[1]

[o] [e[n]n]e]
3. Combine the result
return left+right 0o * 2

Exercise: Remove Blanks from a String

Divide and Conquer Example

def deblank(s):
""Returns: s but with its blanks removed""

1. Decide what to do on “small” data

= If it is the empty string, nothing to do
ifs="
| returns

= If it is a single character, delete it if a blank
ifs=="" #Thereis a space here

| return # Empty string
else:

| returns
16

Putting it All Together

def num_es(s):
""Returns: # of 'e'sin &'
#1. Handle small data

ifs=="

elif len(s) ==1:
| return1if s[0] =="e' else 0

2. Break into two parts
left = num_es(s[0])

right = num_es(s[t:]) Recursive
Case

3. Combine the result
return left+right

45

Exercise: Remove Blanks from a String

def deblank(s):
""Returns: s w/o blanks™"
ifs=="

| returns
. Handle small data
elif len(s) =1:

| return"if s[0] =""else s

el
right = deblank(s[1]) oL
return left+right }

48

def deblank(s):
\ ""Returns: s but with its blanks removed""

2. Decide how to break it up

left = deblank(s[0]) # A string with no blanks
right = deblank(s[t]) # A string with no blanks

3. Decide how to combine the answers
return left+right # String concatenation

47

Putting it All Together

def deblank(s):
""Returns: s w/o blanks™"
ifs=="

elif len(s) ==1:

| return"if s[0] ==""else s
Recursive
Case

left = deblank(s[0])
right = deblank(s[t:])

return left+right

49

Following the Recursion Post-lecture exercise

deblank| | a | | b | | c | e Visualize a call of deblank using Python Tutor
e Code in file deblank.py
deblank deblankE * Pay attention to
g Yy = the recursive calls (call frames opening up),
stop (base case) * the compl«ition of"a call (sending the result to the
deblankE deblankl: b . call frame “above”),
s @ = and the resulting accumulation of the answer.
stop (base case) » Do this exercise before next lecture. Really!

You really, really, really want to visualize a call of deblank using Python Tutor. Pay attention to
the recursive calls (call frames opening up), the completion of a call (sending the result to the call
frame “above”), and the resulting accumulation of the answer. S0 64

