e TN W N
N e \ :
& - 2\ A \
\ | X (‘." \' 3
b [A o

http://www.cCs.cC

W

Lecture 16:
More Recursion!

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp

Announcements

* Prelim 1 accounts for 15% of course grade only. Treat it
as a diagnostic tool: 1s there a topic that you need to
review? Strengthen your foundation now. 1-on-1
meeting opportunities to be available on CMS soon

» Attend your lab session! New experiment: you can
additionally attend another online lab session to get
more help on weekly lab exercises

* ACSU annual Research Night, Apr 8 5:30-7:30pm
= Interested in undergraduate research in CS?
" https://discord.com/invite/cCM3QuGY3B

https://discord.com/invite/cCM3QuGY3B

Recursion

Recursive Function:
A function that calls itself (directly or indirectly)

Recursive Definition:
A definition that is defined in terms of itself

From previous lecture: Factorial

Non-recursive definition:
nl=n Xn-1 X ... X2 X1
=n(n-1 X ... X2 X 1)

Recursive definition:
n!=n((n-1)! forn>0 Recursive case
0!=1 Base case

Recursion

def factorial(n):

factorial

""Returns: factorial of n.

n|3

A3

Precondition: n= 0 an int
1 ifn=0:;
2 \ return 1

=)

3| "return n*factorial(n-1)

Now what?

Each call 1s

Ka new frame J

factorial(3)

Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1 data 2

Y Y
Solve Problem P Solve Problem P

g J
Y

Combine Answer!

Example: Reversing a String

def reverse(s):

""Returns: reverse of s Hie|l|1|o

Precondition: s a string™" @
1. Handle base case

2. Break into two parts

3. Combine the result

Example: Reversing a String

def reverse(s): e
""Returns: reverse of s

Precondition: s a string™" ‘;' ‘;'

ell|1]o]!

1. Handle base case
left| H e|ll|[1]|o

2. Break into two parts
left =reverse(s[0])

right{ 1o | 1|1]e

right = reverse(s|[l:])
If this is how we break it up....

3. Combine the result

How do we combine it?
28

Alternate Implementation (Q)

def reverse(s):
""Returns: reverse of s

Precondition: s a string™" Does this work?
1. Handle base case
if len(s) <=1: A: YES
return s
B: NO

2. Break into two parts
half =len(s)//2

left =reverse(s[:half])
right = reverse(s[half:])

3. Combine the result
return right+left

def reverse(s):
if len(s) <=1:
returns
half =len(s)//2
left =reverse(s[:half])
right = reverse(s[half])
return right+left

=]

reverse(s[half:])

reverse(s[:half])
H

Execute the function call reverse('Hello!’)

reverse(s[:half])

110

!

€

1

1

/\

reverse(s[:half])

€

reverse(s[half:])

1

Result: ‘lolleh’

reverse(s[:half])

reverse(s[half:])

0 !

//

1

reverse(s[:half])

reverse(s[half)

O

/\\

()

reverse(s[half:])

!

37

def reverse(s):
if len(s) <=1:
returns
half =len(s)//2
left =reverse(s[:half])
right = reverse(s[half])
return right+left

=]

reverse(s[half:])

reverse(s[:half])
H

Execute the function call reverse('Hello!’)

reverse(s[:half])

110

!

€

1

1

/\

reverse(s[:half])

€

reverse(s[half:])

1

Result: ‘lolleh’

reverse(s[:half])

reverse(s[half:])

0 !

//

1

reverse(s[:half])

reverse(s[half)

O

/\\

()

reverse(s[half:])

!

38

def deblank(s):

Following the Recursion Retums switho spaces™
returns
elif len(s)==1:
deblank a b C return"" if 5[0]==,, " alse s

left= deblank(s[0])
right= deblank(s[1:])

deblank deblank| a b C return left+right

@ @ % x =deblank(ab c)

stop (base case)
deblank | a deblank b C

g
stop (base case) @

From last lecture: did you visualize a call of deblank using Python Tutor? Pay attention to the
recursive calls (call frames opening up), the completion of a call (sending the result to the call
frame “above”), and the resulting accumulation of the answer.

41

Example: Palindromes

 Example:

AMANAPLANACANALPANAMA

MOM

* Dictionary definition: “a word that reads (spells) the
same backward as forward”

* Can we define recursively?

42

Example: Palindromes

 String with > 2 characters 1s a palindrome 1f:
" its first and last characters are equal, and

" the rest of the characters form a palindrome

 Example:
have to be the same

f‘ N
AMANAPLANACANALPANAMA
.

has to be a palindrome

* Implement: def ispalindrome(s):

43

Example: Palindromes

String with > 2 characters 1s a palindrome 1f:
" its first and last characters are equal, and

" the rest of the characters form a palindrome

def ispalindrome(s):
""Returns: True If s is a palindrome
if len(s) < 2:

"~ return True

i Recursive
Definition

Base case

endsAreSame =
middlelsPali =
return

44

Recursion and Objects

» Represents the “family tree”

Class Person
= (Objects have 3 attributes

" pame: String

John Sr.

= parentl: Person (or None)
= parent2: Person (or None)

= Goes as far back as known

= Attributes parentl and parent2

are None if not known

Eva Shane || Carmen
Pamela
John Jr. Jane Portia Ellen

N4

John III

 Constructor: Person(name,pl,p2)

~.

John IV

\/

Alice

Recursion and Objects

def num_ancestors(p):
""Returns: num of known ancestors

Pre: p is a Person

1. Handle base case.
No parents

(no ancestors)

2. Break into two parts
Has parentl or parent2

Count ancestors of each one
(plus parentl, parent2 themselves)

3. Combine the result

John Sr.

Eva Shane || Carmen
Pamela
John Jr. Jane Portia Ellen

N4

John III

11 ancestors

\/

Alice

\/

John IV

Recursion and Objects

def num_ancestors(p):

"""Returns; num of known ancestors O slieme || Cemmien
Pre: p is a Person™
1. Handle base case. e ||| emdh
if p.parentl == None and p.parent2 == None: \/
| return0O
John Jr. Jane Portia Ellen

2. Break into two parts

parentls =0

if p.parent1 != None:

| parentls = 1+num_ancestors(p.parent1)
parent2s =0

if p.parent2 != None:

| parent2s = 1+hum_ancestors(p.parent2)

3. Combine the result
return parentls+parent2s

N4

John III

11 ancestors

\/

Alice

\/

John IV

Recursion and Objects

def num_ancestors(p):
""Returns: num of known ancestors

Pre: p is a Person™

1. Handle base case.
if p.parent1 == None and p.parent2 == None:
| return0

2. Break into two parts

parentls =0

if p.parent1 != None:

| parentls = T+num_ancestors(p.parentls)
parent2s =0

if p.parent2 != None:

| parent2s = 1+hum_ancestors(p.parent2s)

3. Combine the result
return parentis+parent2s

We don’t actually
need this.

It 1s handled by the

conditionals 1n #2.

51

Exercise: All Ancestors

def all_ancestors(p):

""Returns: list of all ancestors of p
1. Handle base case.

John Sr.

2. Break into parts.
3. Combine answer.

__

__

Eva Shane || Carmen
Pamela
John Jr. Jane Portia Ellen

N4

John III

\/

Alice

~.

John IV

