Ve SR WA RS RN SPERL P e

http://www.cs.cornell.edu/courses/cs1110/2021sp
RS DR NS s R N o S
Lecture 17:

Classes
(Chapters 15 & 17.1-17.5)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

Recall: Objects as Data in Folders

nums = [2,3,5] unique
identifier
nums[l] = 7
* An object is like a manila folder
. . type
e Contains variables
= called attributes

Global Space idl

nums
0

= Can change attribute values
(W/ assignment statements)

* Tab identifies it
= Unique number assigned by Python

Cﬂ}k\l\)
=]

= Fixed for lifetime of the object
* Type shown in the corner ¢

Simple Class Definition

class <class-name>:

"""Class specification - -
Just like function

definitions, but placed
inside a class definition,
i.e., indented relative to
the class header

<method definitions>

Announcements

4/8/2021

* A4 due Tues Apr 13
* Prelim 2 on Apr 22 (Thurs)

* Prelim 2 seat or online session will be assigned
by tomorrow via CMS. You have until Wedn
Apr 14 to request a change in CMS with
Justification

* ACSU annual Research Night, Apr 8 5:30-7:30pm

= Interested in undergraduate research in CS?
= https:/discord.com/invite/cCM3QuGY3B

Classes are user-defined Types

Classes are how we add Example Classes
new types to Python * Point3

class name . Rect

¢ Person

* Reader

id2

x

The Class Specification

class Student: m

""An instance is a Cornell student

Attribute list T
Description and invariant

Instance Attributes:
netiD: student's netID [str], 2-3 letters +1-4 digits
courses: nested list [[name0, n0], [namel, n1], ...]

name is course name [str], n is number of credits [int]
major: declared major [str]

unn
Attribute name

i Convention: capitalize first letter of class name

http://www.cs.cornell.edu/courses/cs1110/2021sp
https://discord.com/invite/cCM3QuGY3B

Constructor

« Function to create new instances Global Space
= function name is the class name

= Created for you automatically

« Calling the constructor:

id8
= Makes a new object folder
= Initializes attributes (see next slide) netiD
= Returns the id of the folder courses
major

courses = [["CS 1110, 4], ["MATH1920", 3]]
s = Student("abcl123", courses, "Music")

two

und(rscores Special Method: _|n|t_

4/8/2021

What happens when constructor is called?

» Returns folder name, the identifier major

s = Student("abc123", courses, "Music") Global Space
« Creates a new object (folder) courses

of the class Student on the heap
= Folder is initially empty

< Executes the method __init__ ids

= if __init__ exists

= Puts attributes in the fold(‘:r. netlD
= Note: constructor calls __init__

automatically if it exists courses

Evaluating a Constructor Expression

def Y init_(self, netlD, courses, major): Global Space
""nitializer: creates a Student

call
Has netID, courses and a major ed by the courses|

Consty
netID: [str], 2-3 letters +1-4 digits Uctor S

courses. nested list [[name0, n0], [namel, n1], ...]

name is course name [str], Param s £ id8
nis number of credits [int] Ofinstae frid
major: declared major [str] """ bei nce
eing netiD

self.netlD =netiD initia;
allze
self.courses = courses d.Use courses

itto ass;
I / n .
self.major = major attriburi major

courses = [['CS 110", 4], ["MATH1920", 3]]
s = Student("abc123", courses, "Music")
this is the call to the constructor, which calls _init_

Truths about instantiating an object of a class

» Creates a new object (folder)

s = Student("abc123", courses, "Music") Global Space

of the class Student on the heap
= Folder is initially empty

* Executes the method __init__ ids
= self = folder name = identifier
= Other arguments passed in order netiD ["abci23'

= Executes commands in initializer
L courses
= Note: constructor calls __init__

automatically if it exists major
« Returns folder name, the identifier

Invariants

A) Instantiate an object by calling the constructor
B) The constructor creates the folder

C) A constructor calls the __init__ method

D) __init__ puts attributes in the folder

E) The constructor returns the id of the folder

* Properties of an attribute that must be true

» Works like a precondition:
= If invariant satisfied, object works properly
= If not satisfied, object is “corrupted”
* Example:
= Student class: attribute courses must be a list

 Purpose of the class specification

Checking Invariants with an Assert

class Student:
“"Instance is a Cornell student "
def __init__(self, netID, courses, major):
""Initializer: instance with netID, and courses which defaults empty
netlD: [str], 2-3 letters +1-4 digits
courses: nested list [[name0, n0], [namel, ni], ...]
name is course name [str], n is number of credits [int]

major: declared major [str] "
assert type(netID) == str, "netID should be type str"
assert netID[0].isalpha(), "netID should begin with a letter"
assert netID[-1].isdigit(, "netID should end with an int"
assert type(courses) == list, "courses should be a list"
assert major==None or type(major) == str, "major should be None or type str"

self.netID = netID
self.courses = couress
self.major = major

Making Arguments Optional

* We can assign default values to _init__arguments
= Write as assignments to parameters in definition
= Parameters with default values are optional
Examples:

s1 = Student(“xy1234", [], "History") # all 3 arguments given
s1 = Student(“xy1234", course_list) # netID, courses given, major defaults to None
s1 = Student(“xy1234”, major="Art") # netID, major given, courses defaults to []

class Student:
def __init_(self, netID, courses=[], major=None):
self.netID = netlD
self.courses = courses
self.major = major
<the rest of initializer goes here > 17

Continue developing our class Student ...

What if we want to track and limit the number of credits
a student is taking....
id5 idé id7
netiD['abcl23' | netlD| ‘def456' netiD| ‘gh7890

courses| id2 courses| id3 courses| id4
major [“Music" | major [*History’] major ["CS"_|
n_credit “ n_credit n_credit

2

Anything wrong with this? "

Aside: The Value None

4/8/2021

» The major attribute is a :
id5
problem. Student
= major is a declared major ne!ID
= Some students don't have one! COUFSSS

major

Solution: use value None
= None: Lack of str
= Will reassign the field later!

We know how to make:

* Class definitions

* Class specifications

* The _init_ method

* Attributes (using self)

Class Attributes

Class Attributes: Variables that belong to the Class
* One variable for the whole Class

» Shared by all object instances

+ Access by <Class Name>.<attribute-name>

Why?

» Some variables are relevant to every object instance of a class
* Does not make sense to make them object attributes

» Doesn’t make sense to make them global variables, either

Example: we want all students to have the same credit limit
22

Class Attributes — assign in class definition

class Student:
"*Instance is a Cornell student "
max_credit =22
def _init__(self, netID, courses, major):
< specs go here >
< assertions go here > Where
self.netlD = netID

w liye???
does max credit \ive???
oe g

self.courses = courses
self.major = major
self.n_credit = 0
for one_course in courses:
self.n_credit = self.n_credit +one_course[l] # add up all the credits

assert self.n_credit <= Student.max_credit, "over credit limit"

[X ﬁ - 23
Refer to class attribute using class name

Objects can have Methods

Function: call with object as argument
<function-name>(<arguments>)
len(my_List)

id3

courses|__id2_]
major
n_credit E

Method: function tied to the object
<object-variable>.<function-call>
my_list.count(7)

 Attributes live in object folder
* Class Attributes live in class folder
¢ Methods live in class folder

id5
Method Definitions
netlD
Looks like a function def courses| _id2]

= But indented inside class major
= 15t parameter always self noredt[15|
def __init__(self, netID, courses=[], major=None):

Example: self.netID = netiD
self.courses = courses

sl.enroll("AEM 2400", 4) el major = major

= Go to class folder for sl (i.e., # <rest of init fn goes here >

Student) that’s where enroll is
defined def enroll(self, cname, n):

4/8/2021

Classes Have Folders Too

Object Folders

* Separate for each instance
+ Example: 2 Student objects

o] s
52 netID

courses

major
n_credit |I|
idé

courses
major

n_credit

Class Folders

e Data common to all
instances

* Not just data!

e Everything common to
all instances goes here!

24

Complete Class Definition

keyword class
Beginning of a
class definition

Specification
(similar to one
for a function)

to define
class variables

class <class-name>:
""Class specification
<assignment statements>

<method definitions>

to define
class
methods

class Student():

max_credit =22

...<snip> ...

"""Specification goes here.

def _init_(self, netlD, courses, major):

Python creates
after reading the
class definition

26

More Method Definitions!

class Student:

def __init_(self, netID, courses=[], major=None):

<init fn definition goes here >
def enroll(self, name, n):

< enroll fn definition goes here >
def drop(self, course_name):

updates n_credit accordingly

course_name: name of course to
for one_course in self.courses:

""removes course with name course_name from courses i

Recall from class
invariant that attribute
courses is a nested list,
S0 one_course here is a
list with 2 values: at
index Ois the course
name; at index 1is the
..... number of credits of
that course

= Now enrollis called with sl
as its first argument

= Now enroll knows which
instance of Student it is
working with

if self.n_credit +n > Student.max_credit:
‘ print("Sorry your schedule is fulll")
else:
self.courses.append([cname, n])
self.n_credit = self.n_credit +n
print("Welcome to "+ cname)

if one_course[0] == course_name:
self.n_credit = self.n_credit - one_course[l]
self.courses.remove(one_course)
print(“just dropped "+course_name)
print("currently have "+str(self.n_credit)+" credits")

28

Class Gotchas... and how to avoid them

Rules to live by:
1. Refer to Class Attributes using the Class Name
sl = Student("xy1234", [, "History")

print("max credits =" + str(Student.max_credit))

2. Don’t forget self
= in parameter list of method (method header)
= when defining method (method body)

Accessing vs. Modifying Class Variables

* Recall: you cannot assign to a global variable
from inside a function call

+ Similarly: you cannot assign to a class attribute
from “inside” an object variable

sl = Student(“xy1234”, [], "History")

Student.max_credit =23 # updates class attribute

sl.max_credit = 24 # creates new object attribute
called max_credit

Better to refer to Class Variables using the Class Name -

Don’t forget self, Part 2 (Q)

4/8/2021

Name Resolution for Objects

* (objecty.(name) means 51 id5

= Go the folder for object netin| 1234
= Find attribute/method name courses| 2|
major

= If missing, check class folder
n_credit

|

= If not in either, raise error

s1 = Student("xy1234", [], "History")

finds attribute in object folder
print(sl.netID)
finds attribute in class folder

print(sl.max_credit) € dangerous 36

Don’t forget self, Part 1

sl = Student(“xy1234", [], "History")
s2 = Student(“ab132’, [], “Math") class Student:
sl.enroll("AEM 2400, 4)

def __init__(self, netID, courses, major):
self.netD = netID
self.courses = courses
<var>.<method_name> always self.major = major
passes <var> as first argument # < rest of constructor goes here >

sl = Student(“xy1234”, [], "History")

s2 = Student(“ab132”, [], “Math”) class Student:

sl.enroll("AEM 2400", 4) def __init__(self, netID, courses, major):
What happens? self.netlD = netlD
A Error self.courses = courses
B) Nothing, self is not needed self.major = major
C) creates new local variable n_credit # <rest of constructor goes here >
D) creates new instance variable

n_credit lef enroll(self, name, n):
E) creates new Class attribute n_credit if seten_credit +n > Student.max_credit:
#ifyou forget self ‘ print("Sorry your schedule is fulll")
else:

self.courses.append((name, n))
self.n_credit = self.n_credit +n

@ print("Welcome to "+ name) ©

ef enroll(set; name, n): # if you forget self
if self.n_credit +n > Student.max_credit:
‘ print("Sorry your schedule is full!")
else:
TypeError: enroll() takes 2 self.courses append((name,)
positional arguments but 3 self.n_credit = self.n_credit +n
were given print("Welcome to "+ name)

39

What gets Printed? (Q)

import college A_ B_
s1 = college.Student(“j1200", [], "Art") 22 22
print(sl.max_credit) 22 22
s2 = college.Student(“j1202", [, "History") 23 23
print(s2.max_credit) 23 23
s2.max_credit =23 123 [22]
print(sl.max_credit) .
print(s2.max_credit) C: D:
print(college.Student.max_credit) 22 22

22 22

22 22

23 23

22 23

@y = el

