
4/8/2021

1

Lecture 17:
Classes

(Chapters 15 & 17.1-17.5)

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp
Announcements

• A4 due Tues Apr 13

• Prelim 2 on Apr 22 (Thurs)

• Prelim 2 seat or online session will be assigned

by tomorrow via CMS. You have until Wedn

Apr 14 to request a change in CMS with

justification

• ACSU annual Research Night, Apr 8 5:30-7:30pm

 Interested in undergraduate research in CS?

 https://discord.com/invite/cCM3QuGY3B

3

Recall: Objects as Data in Folders

nums = [2,3,5]

nums[1] = 7

• An object is like a manila folder

• Contains variables

 called attributes

 Can change attribute values

(w/ assignment statements)

• Tab identifies it

 Unique number assigned by Python

 Fixed for lifetime of the object

• Type shown in the corner 4

id1

0 2

1 3

2 5

list

type

unique
identifier

7

id1nums

Heap Space

Global Space

Classes are user-defined Types

Classes are how we add

new types to Python
Example Classes
• Point3

• Rect

• Person

• Book

• Reader

5

id2

x 2

y 3

z 5

Point3

class name

Simple Class Definition

class <class-name>:

"""Class specification"""

<method definitions>

6

Just like function

definitions, but placed

inside a class definition,

i.e., indented relative to

the class header

class Student:

"""An instance is a Cornell student

Instance Attributes:

netID: student's netID [str], 2-3 letters + 1-4 digits

courses: nested list [[name0, n0], [name1, n1], …]

name is course name [str], n is number of credits [int]

major: declared major [str]

"""

The Class Specification

7

Description and invariant
Attribute list

Attribute name

Short

summary

Convention: capitalize first letter of class name

http://www.cs.cornell.edu/courses/cs1110/2021sp
https://discord.com/invite/cCM3QuGY3B

4/8/2021

2

Constructor

• Function to create new instances

 function name is the class name

 Created for you automatically

• Calling the constructor:

 Makes a new object folder

 Initializes attributes (see next slide)

 Returns the id of the folder

8

courses = [["CS 1110", 4], ["MATH 1920", 3]]
s = Student("abc123", courses, "Music")

folder
not

drawn

id8

netID 'abc123'

courses id2

Student

major "Music"

Heap Space

id2courses

Global Space

id8s

What happens when constructor is called?

• Creates a new object (folder)

of the class Student on the heap

 Folder is initially empty

• Executes the method __init__

 if __init__ exists

 Puts attributes in the folder

 Note: constructor calls __init__
automatically if it exists

• Returns folder name, the identifier

9

s = Student("abc123", courses, "Music")

id8

netID 'abc123'

courses id2

Student

major "Music"

Heap Space

id2courses

Global Space

id8s

folder
not

drawn

Special Method: __init__

def __init__(self, netID, courses, major):

"""Initializer: creates a Student

Has netID, courses and a major

netID: [str], 2-3 letters + 1-4 digits

courses: nested list [[name0, n0], [name1, n1], …]

name is course name [str],

n is number of credits [int]

major: declared major [str] """

self.netID = netID

self.courses = courses

self.major = major

10

two
underscores

courses = [["CS 1110", 4], ["MATH 1920", 3]]

s = Student("abc123", courses, "Music")

id8

netID 'abc123'

courses id2

Student

major "Music"

Heap Space

id2courses

Global Space

id8s

folder
not

drawn

this is the call to the constructor, which calls __init__

Evaluating a Constructor Expression

• Creates a new object (folder)

of the class Student on the heap

 Folder is initially empty

• Executes the method __init__

 self = folder name = identifier

 Other arguments passed in order

 Executes commands in initializer

 Note: constructor calls __init__
automatically if it exists

• Returns folder name, the identifier

11

s = Student("abc123", courses, "Music")

id8

netID 'abc123'

courses id2

Student

major "Music"

Heap Space

id2courses

Global Space

id8s

folder
not

drawn

Truths about instantiating an object of a class

A) Instantiate an object by calling the constructor

B) The constructor creates the folder

C) A constructor calls the __init__ method

D) __init__ puts attributes in the folder

E) The constructor returns the id of the folder

12

Invariants

• Properties of an attribute that must be true

• Works like a precondition:

 If invariant satisfied, object works properly

 If not satisfied, object is “corrupted”

• Example:

 Student class: attribute courses must be a list

• Purpose of the class specification

14

4/8/2021

3

Checking Invariants with an Assert

class Student:

"""Instance is a Cornell student """

def __init__(self, netID, courses, major):

"""Initializer: instance with netID, and courses which defaults empty

netID: [str], 2-3 letters + 1-4 digits

courses: nested list [[name0, n0], [name1, n1], ...]

name is course name [str], n is number of credits [int]

major: declared major [str] """

self.netID = netID

self.courses = couress

self.major = major
15

assert type(netID) == str, "netID should be type str"
assert netID[0].isalpha(), "netID should begin with a letter"
assert netID[-1].isdigit(), "netID should end with an int"
assert type(courses) == list, "courses should be a list"
assert major==None or type(major) == str, "major should be None or type str"

Aside: The Value None

• The major attribute is a

problem.

 major is a declared major

 Some students don't have one!

Solution: use value None
 None: Lack of str

 Will reassign the field later!

16

netID 'abc123'

courses id2

Student

major None

id5

Making Arguments Optional

• We can assign default values to __init__ arguments

 Write as assignments to parameters in definition

 Parameters with default values are optional

Examples:

s1 = Student(“xy1234”, [], "History") # all 3 arguments given

s1 = Student(“xy1234”, course_list) # netID, courses given, major defaults to None

s1 = Student(“xy1234”, major="Art") # netID, major given, courses defaults to []

17

class Student:

def __init__(self, netID, courses=[], major=None):

self.netID = netID

self.courses = courses

self.major = major

< the rest of initializer goes here >

We know how to make:

• Class definitions

• Class specifications

• The __init__ method

• Attributes (using self)

18

Continue developing our class Student …

What if we want to track and limit the number of credits
a student is taking….

21

id5

netID 'abc123'

courses id2

Student

major "Music"

n_credit 15

max_credit 22

id6

netID 'def456'

courses id3

Student

major "History"

n_credit 14

max_credit 22

id7

netID 'gh7890'

courses id4

Student

major "CS"

n_credit 21

max_credit 22

Anything wrong with this?

Class Attributes

Class Attributes: Variables that belong to the Class

• One variable for the whole Class

• Shared by all object instances

• Access by <Class Name>.<attribute-name>

Why?

• Some variables are relevant to every object instance of a class

• Does not make sense to make them object attributes

• Doesn’t make sense to make them global variables, either

Example: we want all students to have the same credit limit
22

4/8/2021

4

Class Attributes – assign in class definition

class Student:

"""Instance is a Cornell student """

max_credit = 22

def __init__(self, netID, courses, major):

< specs go here >

< assertions go here >

self.netID = netID

self.courses = courses

self.major = major

self.n_credit = 0

for one_course in courses:

self.n_credit = self.n_credit + one_course[1] # add up all the credits

assert self.n_credit <= Student.max_credit, "over credit limit"

23
Refer to class attribute using class name

24

Classes Have Folders Too
Object Folders

• Separate for each instance

• Example: 2 Student objects

Class Folders

• Data common to all

instances

• Not just data!

• Everything common to

all instances goes here!

Student

id5s1

id6s2

22max_credit

netID 'abc123'

courses id2

Student

major "Music"

n_credit 15

id5

netID 'def456'

courses id3

Student

major "History"

n_credit 14

id6

Objects can have Methods

Function: call with object as argument

<function-name>(<arguments>)
len(my_list)

Method: function tied to the object

<object-variable>.<function-call>
my_list.count(7)

• Attributes live in object folder

• Class Attributes live in class folder

• Methods live in class folder
25

Student

22max_credit

netID 'abc123'

courses id2

Student

major "Music"

n_credit 15

id5

__init__(self, netID,
courses, major)

Complete Class Definition

class <class-name>:

"""Class specification"""

<assignment statements>

<method definitions>

keyword class
Beginning of a

class definition

Specification

(similar to one

for a function)

to define

class

methods

to define

class variables

26

class Student():
"""Specification goes here.""”
max_credit = 22
def __init__(self, netID, courses, major):

. . . <snip> . . .

Python creates

after reading the

class definition

__init__(self, netID,
courses, major)

Student

22max_credit

Method Definitions

Looks like a function def

 But indented inside class

 1st parameter always self

Example:

s1.enroll("AEM 2400", 4)

 Go to class folder for s1 (i.e.,

Student) that’s where enroll is

defined

 Now enroll is called with s1
as its first argument

 Now enroll knows which

instance of Student it is

working with

class Student():

def __init__(self, netID, courses=[], major=None):

self.netID = netID

self.courses = courses

self.major = major

< rest of init fn goes here >

def enroll(

if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")

else:

self.courses.append([cname, n])

self.n_credit = self.n_credit + n

print("Welcome to "+ cname) 27

__init__(self, netID, …)
enroll(self, cname, n)

Student

22max_credit

self, cname, n):

netID 'abc123'

courses id2

Student

major "Music"

n_credit 15

id5
More Method Definitions!

class Student:

def __init__(self, netID, courses=[], major=None):

< init fn definition goes here >

def enroll(self, name, n):

< enroll fn definition goes here >

def drop(

"""removes course with name course_name from courses list

updates n_credit accordingly

course_name: name of course to drop [str] """

for one_course in self.courses:

if one_course[0] == course_name:

self.n_credit = self.n_credit – one_course[1]

self.courses.remove(one_course)

print("just dropped "+course_name)

print("currently have "+str(self.n_credit)+" credits")
28

self, course_name):

Recall from class

invariant that attribute

courses is a nested list,

so one_course here is a

list with 2 values: at

index 0 is the course

name; at index 1 is the

number of credits of

that course

4/8/2021

5

Class Gotchas… and how to avoid them

Rules to live by:

1. Refer to Class Attributes using the Class Name

s1 = Student("xy1234", [], "History")

print("max credits = " + str(Student.max_credit))

2. Don’t forget self

 in parameter list of method (method header)

 when defining method (method body)

35

Name Resolution for Objects

• ⟨object⟩.⟨name⟩ means

 Go the folder for object

 Find attribute/method name

 If missing, check class folder

 If not in either, raise error

s1 = Student("xy1234", [], "History")

finds attribute in object folder

print(s1.netID)

finds attribute in class folder

print(s1.max_credit) dangerous 36

id5s1

__init__(self, netID, courses, major)
enroll(self, new_coures, n)

Student

22max_credit

netID xy1234'

courses id2

Student

major "History"

n_credit 15

id5

Accessing vs. Modifying Class Variables

• Recall: you cannot assign to a global variable

from inside a function call

• Similarly: you cannot assign to a class attribute

from “inside” an object variable

s1 = Student(“xy1234”, [], "History")

Student.max_credit = 23 # updates class attribute

s1.max_credit = 24 # creates new object attribute

called max_credit

Better to refer to Class Variables using the Class Name
37

Don’t forget self, Part 1

39

s1 = Student(“xy1234”, [], "History")

s2 = Student(“ab132”, [], “Math”)

s1.enroll("AEM 2400", 4)

TypeError: enroll() takes 2
positional arguments but 3
were given

<var>.<method_name> always

passes <var> as first argument

class Student:

def __init__(self, netID, courses, major):

self.netID = netID

self.courses = courses

self.major = major

< rest of constructor goes here >

def enroll(self, name, n): # if you forget self

if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")

else:

self.courses.append((name, n))

self.n_credit = self.n_credit + n

print("Welcome to "+ name)

Don’t forget self, Part 2 (Q)

40

s1 = Student(“xy1234”, [], "History")

s2 = Student(“ab132”, [], “Math”)

s1.enroll("AEM 2400", 4)

class Student:

def __init__(self, netID, courses, major):

self.netID = netID

self.courses = courses

self.major = major

< rest of constructor goes here >

def enroll(self, name, n):

if self.n_credit + n > Student.max_credit:

print("Sorry your schedule is full!")

else:

self.courses.append((name, n))

self.n_credit = self.n_credit + n

print("Welcome to "+ name)

What happens?
A) Error
B) Nothing, self is not needed
C) creates new local variable n_credit
D) creates new instance variable

n_credit
E) creates new Class attribute n_credit

What gets Printed? (Q)

42

import college

s1 = college.Student(“jl200", [], "Art")
print(s1.max_credit)
s2 = college.Student(“jl202", [], "History")
print(s2.max_credit)
s2.max_credit = 23
print(s1.max_credit)
print(s2.max_credit)
print(college.Student.max_credit)

C:

22

22

22

23

22

A:

22

22

23

23

23

B:

22

22

23

23

22

D:

22

22

22

23

23

