
1

Lecture 19:
while Loops

(Sections 7.3, 7.4)

CS 1110

Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp
Announcements

• A4 and Lab 14 due Fri Apr 16

• Labs 15&16 due Mon Apr 19

• Prelim 2 modality/time “regrade requests” due last night. You

will get a response from us by tomorrow (Friday)

• Prelim 2 on Apr 22 (Thurs) 6:30-8pm, scheduled by university

 Tues Apr 20 lecture  review

 Lab sections next week  review (no new lab exercise)

 Thurs Apr 22 lecture  office hour

• Prelim 2 topics end with previous lecture and the current labs (on

classes). Today’s topic, while-loop, will not be on Prelim 2. See

Prelim 2 Study Guide on course website for more detail.

3

Recall: For Loops

for x in grades:
print(x)

• loop sequence: grades

• loop variable: x

• body: print(x)

To execute the for-loop:

1. Check if there is a “next” element

of loop sequence

2. If so:

• assign next sequence element to

loop variable

• Execute all of the body

• Go back to Step 1

3. If not, terminate execution

grades has

more elements
put next

element in x

True

False
print(x)

4

Different types of Repetition

1. Process each item in a sequence

 Compute statistics for a dataset

 Send all your contacts an email

2. Do something n times

 Draw a checkers board

 Run a protein-folding simulation for 106 time steps

3. Do something an unknown number of times

 Play word guessing game until 6 strikes

 Go in current direction until edge is detected

5

for x in sequence:
process x

for x in range(n):
do something

???

https://www.flickr.com/photos/janitors/albums/72157642146435575/with/13058966193/

Beyond Sequences: The while-loop

while <condition >:

statement 1

…

statement n
• Relationship to for-loop

 Broader notion of

“keep working until done”

 Must explicitly ensure

condition becomes false

 You explicitly manage

what changes per iteration

6

condition body
True

False

body

While-Loops and Flow

import random

num = random.randint(0,10)

guessed_it = False

print(”I’m thinking of a number.”)

while not guessed_it:

guess = int(input(‘Guess it: ’))

guessed_it = (num == guess)

print(‘Well done!')

I’m thinking of a number.

Guess it: 6

Guess it: 2

Guess it: 1

Guess it: 4

Well done!

7

Continuation condition,
not stopping condition

http://www.cs.cornell.edu/courses/cs1110/2021sp
https://www.flickr.com/photos/janitors/albums/72157642146435575/with/13058966193/

2

Q: What gets printed?

a = 8

b = 12

while a != b:

if a > b:

a = a - b

else:

b = b - a

print(a)

14

A: Infinite loop

B: 8
C: 12
D: 4
E: I don’t know

for vs. while

• You can almost always use either

• Sometimes for is better

 Do something a fixed (pre-determined) number of times

• Sometimes while is better

 Do something an indefinite (not infinite) number of times

 E.g., do something until some event happens, i.e., until a

stopping condition is reached

18

Called “definite iteration”

Called “indefinite iteration”

for vs. while

for k in range(n):
do something

k = 0
while k < n:

do something
k = k+1

Must remember to increment

19

do something n times

My preference? for-loop

for vs. while

for k in range(BIG_NUM):
do something
if time to stop:

break

while not time to stop:
do something

20

do something an unknown number of times

My preference? while-loop

Do NOT use break in any

work you submit in

CS1110.

Practice using while-loop in

situations where while-loop

is well suited

for vs. while

for k in range(len(seq)):
seq[k] = seq[k]+1

k = 0
while k < len(seq):

seq[k] = seq[k]+1
k = k+1

21

while is more flexible, but

sometimes requires more code

do something to each element of a sequence

My preference? for-loop

for vs. while

22

do something until a limit is reached

seq = []
k = 0
while k*k < N:

seq.append(k*k)
k = k+1

can use complex

expressions to check

if a task is done

seq = []
sqn= math.floor(sqrt(N))
for k in range(sqn+1):

seq.append(k*k)

for-loop requires you to

know how many iterations

you want ahead of time

My preference? while-loop

e.g., make a table of squares up to N

3

for vs. while

for i in range(len(nums)):
if nums[i] == 3:

del nums[i]

IndexError: list index out of
range

while 3 in nums:
nums.remove(3)

23

change a sequence’s length

is this not beautiful?

My preference? while-loop

e.g., remove all 3’s for list nums

for vs. while

fib = [1, 1]
for k in range(2,n):

fib.append(fib[-1] + fib[-2])

fib = [1, 1]
while len(fib) < n:

fib.append(fib[-1] + fib[-2])

loop variable not

always used

loop variable not

always needed at all

Fibonacci numbers:

F0 = 1

F1 = 1

Fn = Fn–1 + Fn–2

24

find 1st n Fibonacci numbers

My preference? No strong preference

Last item
in list

Second-last
item in list

Using while-loops Instead of for-loops

Advantages

• Better for modifying data

 More natural than range

 Works better with deletion

• Better for convergent tasks

 Loop until calculation done

 Exact #steps are unknown

• Easier to stop early

 Just set loop variable (e.g.,

keep_going) to False

Disadvantages

• Infinite loops happen more

easily

 Easy to forget loop vars

 Or get continuation

condition wrong

• Require more management

 Initialize the condition?

 Update the condition?

25

Setting up a while-loop

0. Situation is to do something until an event happens

1. Write the continuation condition

 Create var names as necessary to express condition

 May be easier to negate stop condition to get
continuation condition

2. Initialize loop vars (vars in loop condition) as necessary

3. In loop body: update loop vars

to possibly change loop condition from True to False

4. Write the rest of the loop body

27

Improve number guessing game

import random

min_num= 1

max_mum= 10

max_chances= 5

secret_num= random.randint(min_num, max_mum)

print("I have a number from "+str(min_num)+" to "+str(max_mum))

print("You have "+str(max_chances)+" chances to guess it")

User guesses until all chances used up or guessed correctly

28

1. Allow fixed number of guesses

For you to add later:

2. If a guess is wrong, tell player whether it was too high or too low.

Optional extra practice

Modify game.py from previous lecture (Lec 18,

guessing a secret word) to use a while-loop instead

of recursion

31

