
4/20/2021

1

Prelim 2 Review

Spring 2021

CS 1110

• Prelim 2 Thurs Apr 22 at 6:30 - 8pm (university-scheduled)

 Your seat or Zoom link will be assigned this afternoon via CMS

 In-person: Bring pens/pencils/erasers (bring several). Bring a

watch or even an actual clock if you have one. No smart

watches/phones! You may not be able to see the wall clock in

Barton from your seat. Bring Cornell ID.

 Online: Different this time: log on to Zoom proctor session on

both devices. Students who have not done a mock exam (for

Prelim 1) will be contacted to do one.

• Labs this week: Prelim 2 review, focus on class methods

• Thurs Apr 22 lecture time  office hours

Announcements

2

Studying for the Exam

• Read study guide. Notes differences among the

semesters

• Review all labs and assignments

 You should be able to do all problems now

• Look at exams from past years

 Exams with solutions on course web page

 Refer to info in study guide regarding differences

among the semesters

Prelim 2 Review 4

Prelim 2 Topics

• Topics after prelim 1:

 Recursion

 Classes

• Topics before but not on prelim 1:

 Nested lists

 Iteration with nested loops

 Dictionaries and tuples

Prelim 2 Review 5

While-loop not on Prelim 2

lab

now

now

now

now

Recursion: Before You Begin

• Plan out how you will approach the task before

writing code

• Consider the following:
▪ How can you “divide and conquer” the task?

▪ Do you understand the spec?

▪ How would you describe the implementation of the

function using words?

Prelim 2 Review 6

Recursion

1. Base case

2. Recursive case

3. Ensure the recursive case makes progress

towards the base case

Prelim 2 Review 7

4/20/2021

2

Base Case

• Create cases to handle smallest units of data

• Depends on what type of data is being processed

and what the function must do to that data

Prelim 2 Review 8

Base Case Examples

Strings Lists Objects (see final

example)

1 Element “5” [5]

0 Elements “” [] None

Prelim 2 Review 9

id3

value 5
left id2

right None

TreeNode

Recursive Case

• Divide and conquer: how to divide the input so

that we can call the function recursively on

smaller input

• When calling the function recursively, assume

that it works exactly as the specification states it

does -- don’t worry about the specifics of your

implementation here

• Use this recursive call to handle the rest of the

data, besides the small unit being handled

Prelim 2 Review 10

Make Progress

• Recursive calls must always make some sort of

“progress” towards the base cases

• This is the only way to ensure the function

terminates properly

• Risk having infinite recursion otherwise

Prelim 2 Review 11

Recursive Function (Fall 2017)

def filter(nlist):

"""Return: a copy of nlist with all negative numbers removed.

The order of the original list is preserved

Example: filter([1,-1,2,-3,-4,0]) returns [1,2,0]

Precondition: nlist is a (possibly empty) list of numbers."""

Prelim 2 Review 13

• Use divide-and-conquer to break up the list

• Filter each “half” and put back together

Plan:

Recursive Function (Fall 2017)

def filter(nlist):

"""Return: a copy of nlist (in order) with negative numbers."""
if len(nlist) == 0:

return []
elif len(nlist) == 1:

return nlist[:] if nlist[0] >= 0 else [] # THIS does the work

Break it up into two parts

left = filter(nlist[:1])
right = filter(nlist[1:])

Combine
return left+right

Prelim 2 Review 15

4/20/2021

3

Recursive Function (Fall 2017)

def filter(nlist):

"""Return: a copy of nlist (in order) with negative numbers."""
if len(nlist) == 0:

return []

Do the work by removing one element
left = nlist[:1]
if left[0] < 0:

left = []
right = filter(nlist[1:])

Combine
return left+right

Prelim 2 Review 16

Either

approach

works.

Do what is

easiest to

you.

Recursive Function (Fall 2014)

def histogram(s):

"""Return: a histogram (dictionary) of the # of letters in string s.

The letters in s are keys, and the count of each letter is the value. If

the letter is not in s, then there is NO KEY for it in the histogram.

Example: histogram('') returns {},

histogram('abracadabra') returns {'a':5, 'b':2, 'c':1, 'd':1, 'r':2}

Precondition: s is a string (possibly empty) of just letters."""

Prelim 2 Review 18

• Use divide-and-conquer to break up the string

• Get two dictionaries back when you do

• Pick one and insert the results of the other

Plan:

Dictionaries (Type dict)

• Can access elements like a list

• Must use the key, not an index

• Cannot slice ranges 19

>>> d = {'ec1':'Ezra', 'ec2':'Ezra', 'tm55':'Toni'}
>>> d['ec1']
'Ezra'
>>> d[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 0
>>> d[:1]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'slice'
>>>

'tm55'

id8

'Ezra'

'Ezra'

'Toni'

dict

'ec2'

'ec1'

id8d

Global Space

Heap Space

Recursive Function

def histogram(s):

"""Return: a histogram (dictionary) of the # of letters in string s."""

if s == '': # Small data

return {}

left = { s[0]: 1 }. No need to compute this

right = histogram(s[1:])

if s[0] in right: # Combine the answer

right[s[0]] = right[s[0]]+1

else:

right[s[0]] = 1

return right

Prelim 2 Review 21

Iteration with For-Loops

Two ways to implement the for-loop

Prelim 2 Review 22

for x in alist:

• x is each value

inside the list

• Modifying x does

not modify the list

for x in range(len(alist)):

• x represents each index of the

list

• Modifying alist[x] modifies

the list

Example with 2D Lists

def max_cols(table):

"""Returns: List storing max value of each column

We assume that table is a 2D list of floats (so it is a list of rows and
each row has the same number of columns. This function returns
a new list that stores the maximum value of each column.)

Examples:
max_cols([[1,2,3], [2,0,4], [0,5,2]]) is [2,5,4]
max_cols([[1,2,3]]) is [1,2,3]

Precondition: table is a NONEMPTY 2D list of floats

Built-in function max not allowed. """

Prelim 2 Review 23

4/20/2021

4

Example with 2D Lists

def max_cols(table):

"""Returns: List storing max value of each column

Precondition: table is a NONEMPTY 2D list of floats"""

Use the fact that table is not empty

result = table[0][:] # Make a copy, do not modify table

Loop through rows, then loop through columns

for row in table:

for k in range(len(row)):

if row[k] > result[k]:

result[k] = row[k]

return result

Prelim 2 Review 25

Questions? Next up: Office Hours

Prelim 2 Review 26

Recursion with Objects

class TreeNode (object):

"""Attributes:

value: An int, the “value” of this TreeNode object

left: A TreeNode object, or None

right: A TreeNode object, or None"""

27

341

2 377

50 9 1110

Understanding the Object’s Structure

id1

341value

id2

id3

left

right

28

id2

TreeNode

2value

id6

None

left

right

id3

377value

id5

id4

left

right

id4

1110value

None

None

left

right

id5

9value

None

None

left

right

id6

50value

None

None

left

right

TreeNode

TreeNode

TreeNode TreeNode TreeNode

Recursion with Objects

def contains (t, v):
"""
Return: True if any of the TreeNode objects in the entire “tree” have the value v

Define the “tree” as the TreeNode t, as well as the TreeNodes accessible
through the left and right attributes of t (if not None)

Preconditions: t is a TreeNode, or None. v is an int.

"""

29

Recursion with Objects

def contains (t, v):
"""
Return: True if any of the TreeNode objects in the entire “tree” have the value v

Define the “tree” as the TreeNode t, as well as the TreeNodes accessible
through the left and right attributes of t (if not None)

Preconditions: t is a TreeNode, or None. v is an int.

"""

if t is None: # Case: None/non-existent Tree

return False

elif t.value == v: # Case: Found value

return True

Now what?

30

4/20/2021

5

Divide and Conquer on Trees

341

2 377

50 9 1110

Left

subtree

Right

subtree

Recall the tree structure...

They can be easily divided into

left and right subtrees!

Recursion on left

Recursion on right

Put result back together

31

Recursion with Objects

def contains (t, v):
"""
Return: True if any of the TreeNode objects in the entire “tree” have the value v

Define the “tree” as the TreeNode t, as well as the TreeNodes accessible
through the left and right attributes of t (if not None)

Preconditions: t is a TreeNode, or None. v is an int.

"""

if t is None: # Case: None/non-existent Tree

return False

elif t.value == v: # Case: Found value

return True

Here need to check t.left subtree and t.right subtree

left_result= contains(t.left, v) # Recursively check branches

right_result= contains(t.right, v)

return left_result or right_result # Combining two bools
32

What is the type of

t.left and t.right?

What happens if t.left
or t.right is None?

