es/cs1118/2021sp

Lecture 22:

Subclasses & Inheritance
(Chapter 18)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

Topics

* Why define subclasses?
= Understand the resulting hierarchy
= Design considerations
* How to define a subclass
= Initializer
= New methods
= Write modified versions of inherited methods
= Access parent’s version using super()

Sharing Work

4/27/2021

Announcements

» No new lab exercises this week. Lab sections cancelled
but there’ll be extra office hours. Good opportunity to
go over A4 if you have any questions. (Hours are listed
in the office hr calendar):

= Tues 1:15-2:30pm (Jonathan C.)
= Wedn 10:10-11am (Priya M.)

» Prelim 2: we expect feedback to be available on

Monday

» Assignment 5: expected release tonight (Tues)

Goal: Make a drawing app

Rectangles, Stars,
Circles, and Triangles
have a lot in common,
but they are also
different in very
fundamental ways....

caca00

Problem: Redundant code.

(Any time you copy-and-paste code, you are likely
doing something wrong.)

Solution: Create a parent class with shared code
= Then, create subclasses of the parent class

= A subclass deals with specific details different from
the parent class

Defining a Subclass

class Shape: Superclass
""A shape located at xy """ Barcat{class Shape
Base class
def _init_(self, x, y): ..

def draw(self): ... S
Child class Rectangle Circle

class Circle(Shape): Derived class
"""An instance is a circle.""
def _init__(self, x, y, radius): ..
def draw(self): ...

class Rectangle(Shape):
"""An in stance is a rectangle. """
def _init__(self, x, y, ht, len): ..
def draw(self): ...


http://www.cs.cornell.edu/courses/cs1110/2021sp

4/27/2021

Extending Classes object and the Subclass Hierarchy

class <name >(<superclass): » Subclassing creates a Example

hierarchy of classes
Class to extend object

) (may need module name: = Each class has its own
<class variables> <modulename>.<superclass») super class or parent

. = Until object at the “top”
<initializer> Shape

object has many features

"""Class specification

<methods> .SO fa.r,.classes have = Default operators:
implicitly extended .
object —nit_, _str_,_eq_ Rectangle
Which of these need to be -
replaced?
Square
8 9
—init__: write new one, access parent’s Object Attributes can be Inherited
class Shape: . + Want to use the original version class Shape: _ d id3
""'A shape @ location x,y "™ of the method? ""'A shape @ location x,y """
def _init__(self, x, y): = New method = original+more def _init__(self, x, y):
selfx=x = Don't repeat code from the original selfx=x TiafiiFaedl in
selfy=y * Call old method explicitly selfy=y Shape
initializer
class Circle(Shape): class Circle(Shape):
"mnstance is a Circle @ xy with size radius™ ""Instance is a Circle @ xy with size radius™" Initialized in
def __init_(self, x, y, radius): def __init_(self, x, y, radius):  Circle
e . initializer
super().__init_(x, y) super().__init__(x,y)
self.radius = radius self.radius = radius

c1 =Circle(l, 2, 4.0)

Can override methods; can access parent’s version Understanding Method Overriding

1 =Circle(1,2,4.0)
print(str(c))

class Shape:
""" Instance is shape @ x,y""
def _init__(self,x,y):
def _str_(self):
return “Shape @ (“+str(self.x)+", “+str(self.y)+)"
def draw(self)....

e Which _str__ do we use?
= Start at bottom class folder
= Find first method with name

= Use that definition
class Circle(Shape):

» Each subclass automatically

Instance is a Circle @ x,y with radius""”
inherits methods of parent.

def _init__(self,x,y,radius):
def _str__(self):

return “Circle: Radius="+str(self.radius)+" “+super()._str_()
def draw(self)....

* New method definitions
override those of parent.




Name Resolution Revisited object
* To look up attribute/method name
1. Look first in instance (object folder)

2. Then look in the class (folder) Shape()
* Subclasses add two more rules: _init_(self,xy)
3. Look in the superclass draw(self)
4. Repeat 3. until reach object Gircle(Shape)
Often called the Bottom—Up Rule LT
draw(self)

¢l =Circle(1,2,4.0)
r = cl.radius id3

cl.draw()

dala—s 1] y[ 2 ]
radius s

Q2: Name Resolution and Inheritance

4/27/2021

Q1: Name Resolution and Inheritance

class A » Execute the following:
def f(self): >»>>a=A()
| return self.g() »>h=B()
def g(self): » What is value of a.f()?
| return10 A 10
B: 14
class B(A): C:5
def g(self): g ]E‘I;R?];;
| return14 - L don t know
def h(self):
| return18 1s

Demo using Turtle Graphics

class & » Execute the following:
def f(self): >»>>a=A()
| return self.g() >»» b = B()
def g(self): + What is value of b.f()?
| return10 A 10
B: 14
class B(A): C:5
D: ERROR
def g(self): ’
| returnl4 E: I don 't know
def h(self):
| return18 .

Who draws what?

class Shape:
"""Moves pen to correct location'

win - Note: need to import the turtle module
which allows us to move a pen on a 2D

def draw(self): grid and draw shapes.
turtle.penup()
turtle.setx(self.x) No matter the shape, we
turtle.sety(selfy) ~ Jobfor| Wantto pick up the pen,
turtle.pendown() Shape | move to the location of the
shape, put the pen down.
class Circle(Shape): But only the shape
"*Draws Circle™” Jobfor_t subclasses know how to do
def draw(self): e the actual drawing.
super().draw()
turtle.circle(self.radius) ‘ See shapes_v3.py, draw_shapes.py ‘ 21

A turtle holds a pen and can draw as it walks! Follows
simples commands:

*  setx, sety — set start coordinate

* pendown, penup — control whether to draw when moving

» forward

A

You do not need to do

Just a demo!

* turn . Graphics
- ytb'mg with Turtle p
Part of the turtle module in Python (wocs.pyhon.ore/s.7ibraryturtie.htmt)

*  You don t need to know it
* Just a demo to explain design choices of draw() in our
classes Shape, Circle, Rectangle, Square

20


https://docs.python.org/3.7/library/turtle.html

