Algorithms for Sorting and
Searching

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp

Announcements

* Labs 17 & 18 due Friday & Monday, respectively

* Next week’s discussion sections =2 office hours for A6
and Prelim 2

* Final Exam on May 21 1:30-4pm. Your assigned
exam session (in-person or online) will be given in
CMS tomorrow. Submit a “regrade request” in CMS
by May 12 1f you have a legitimate reason for
requesting a change

Algorithms for Search and Sort

Well known algorithms

= focus on reviewing programming constructs (while loop) and
analysis

= will not use built-in methods such as index, insert, sort, etc.
Today we’ll discuss

* Linear search

* Binary search

" Insertion sort
More on sorting next lecture
More on the topic in next course, CS 2110!

Searching in a List (Q)

* Search for a target X 1n a
list v

 Start at index 0, keep
checking until you find 1t

or until no more element

to check
0 1 k

v|12|35| 33\ 15 '\"42 |

x[@

Linear search

Suppose another list 1s twice as
long as v. The expected “effort™
required to do a linear search 1s

Squared
Doubled
The same
Halved

I don’t know

m o 0w

See search.py

Search Algorithms

* Search for atarget xina | * Search for a target X 1n a
list v sorted list v

 Start at index 0, keep
checking until you find 1t

or until no more elements
to check

v|12[35(33|15] 42| v[12[15[33[35[42|

x[12 x[14

Linear search Binary search

How do you search for a word in a dictionary?
(NOT linear search)

To find the word “tanto” in my Spanish dictionary...

while dictionary 1s longer than 1 page:
Open to the middle page

if first entry comes before “tanto”:
Rip* and throw away the 1st half

clse:
Rip* and throw away the 2" half

Thebest-selling Spanish
Mini dicﬁonary

* For dramatic effect only--don’t actually rip your
dictionary! Just pretend that the part is gone.

10

Repeated halving of “search window”

Original.: 3000 pages
After 1 halving: 1500 pages

After 2 halvings: 750 pages
After 3 halvings: 375 pages
After 4 halvings: 188 pages
After 5 halvings: 94 pages

After 12 halvings: 1 page

Binary Search

» Repeatedly halve the “search window™

* An item 1n a sorted list of length n can be located
with just log, n comparisons.

e “Savings” 1s significant!

n log2 (n)
100 7
1000 10
10000 13

12

Binary Search: target x =70

c 1 2 3 4 5 o 7 8 9 10 11

i [:] v[mid] 1s not X
vimid] < x

So throw away the left
11
= half ... :

Binary Search: target x =70

c 1 2 3 4 5 o 7 8 9 10 11

v‘12‘15‘33‘35‘42‘45‘51‘62‘73‘75‘86‘98‘

T 1 1

5 EI v[mid] 1s not x
X < v[mid]

- So throw away the
: |11
L right half...

Binary Search: target x =70

c 1 2 3 4 5 o 7 8 9 10 11

v‘12‘15‘33‘35‘42‘45‘51‘62‘73‘75‘86‘98‘
11

5 EI v[mid] is not x
vimid] < x

mid EI

;5 So Throwhcsl\;\:cé?/ the left

Binary Search: target x =70

c 1 2 3 4 5 o 7 8 9 10 11

v‘12‘15‘33‘35‘42‘45‘51‘62‘73‘75‘86‘98‘

m
. v[mlid] 1s not x

v imid] < x

5.
md So throw away the left half...

Binary Search: target x =70

c 1 2 3 4 5 o 7 8 9 10 11

v‘12‘15‘33‘35‘42‘45‘51‘62‘73‘75‘86‘98‘

L: DONE because

mid: n S grep’rer than J.
- - Not a valid search window

Binary search is efficient, but we need to

sort the vector in the first place so that we
can use binary search

* Many sorting algorithms out there...
* We look at insertion sort now

* Next lecture we’ll look at merge sort and do
some analysis

18

The Insertion Process

* (1ven a sorted list x, insert a number y such that
the result 1s sorted

* Sorted: arranged 1n ascending (small to big) order

: sorted | A/\

213619 8

WEe’'ll call this process a “push down,” as in push a
value down until it is in its sorted position 19

Push Down

one push |
down

sorted

Push down 8 (b[4]) into the
sorted segment b[0..3]

KTL;otation \

Just swap 8 &9 | p[h..k] means
elements at
indices h
through k of
list b, i.e.,

Kincluding k /

20

Push Down

Push down 4 into the
sorted segment

Compare adjacent components:
swap 9 &

Compare adjacent components:
swap 8 &

Compare adjacent components:
swap 6 &

23|69
one push |
down
23|68
2|3|6|8
2|3|6|8
one push |
down > 136l
2|3|4|6
- L

Compare adjacent components:
DONE! No more swaps.

See push_down() in insertion_sort.py

26

Sort list b using Insertion Sort

Need to start with a sorted segment. How do you find one!

012 3 405
b [T

Length | segment is sorted

push_down(b, 1) Then sorted segment has length 2
push_down(b, 2) Then sorted segment has length 3
push_down(b, 3) Then sorted segment has length 4
push_down(b, 4) Then sorted segment has length 5
push_down(b, 5) Then entire list is sorted

[For a list of length n, call push_down n-1 times. }

See insertion_sort() 2

Helper functions make clear the algorithm

def swap(b, h, K): Difficult +o unders’rcmd!!|
| def insertion_sort(b):
def push_down(b, k): for i in range(l,len(b)):
while k > 0 and b[k-1] > b[k]: k=1
swap(b, k-1, k) VS, while (k>0 and
k= k-1 blk-1] > blk]) :
def insertion_sort(b): temp= blk-1]
for i in range(1,len(b)): blk-11= b[K
push_down(b, i) blK}= temp

28

Algorithm Complexity

* Count the number of comparisons needed

* In the worst case, need 1 comparisons to push
down an element 1n a sorted segment with 1
clements.

Lecture 24

29

How much work is a push down?

push down _|
a "big"

_—

value

push down
a “small”
value

—

2

3

6

9

8

This push down takes
2 comparisons

This push down takes
4 comparisons.
Worst case scenario:
n comparisons
needed to push down
into a length n sorted
segment.

30

Algorithm Complexity (Q)

def swap(b, h, k): Count (approximately) the
5 number of comparisons

def push_down(b, K): needed to sort a list of
. | length n
while k> 0 and
swap(b, k-1, k) A. ~ 1 comparison
k= k-1

B. ~n comparisons

def insertion_sort(b): C. ~ nj comparisons
= . D. —~ .
for i in range(l,len(b)): n° Comparisons

push_down(b, i)

E. Idon’t know

31

