

Lecture 26: More on Algorithms for Sorting

CS 1110

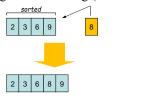
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

More Announcements

- A6 due on Friday
 - Remember academic integrity
- · Expected release dates of solutions and feedback
 - A5 solutions: Wed May 12
 - A4 grades and feedback: Thurs May 13
 - A6 solutions: Tues May 18
 - A5 grades and feedback: Thurs May 20
 - Final exam grades and feedback: Tues May 25
 - A6 grades and feedback: Fri May 28

Announcements

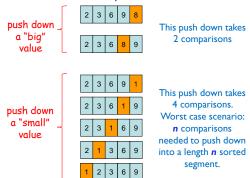

- · Discussion sections this week
 - First 10 minutes dedicated to getting your started on A6
 - Remaining time is office hour for your A6/Prelim 2 questions
- Final Exam on May 21st 1:30-4pm. Your assigned exam session (in-person or online) is shown in CMS. Submit a "regrade request" in CMS by May 12 if you have a legitimate reason for requesting a change. If you have an exceptional circumstance for switching from in-person to online, you must upload to CMS your college's approval of your modality change.

Algorithms for Sorting

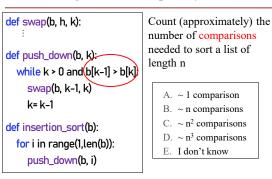
- Well known algorithms
 - focus on reviewing programming constructs (while loop) and analysis
 - will not use built-in methods such as sort, index, insert, etc.
- Today we'll discuss merge sort and compare it to insertion sort, which we discussed last lecture
- More on the topic in next course, CS 2110!

The Insertion Process of Insertion Sort

- Given a sorted list x, insert a number y such that the result is sorted
- · Sorted: arranged in ascending (small to big) order

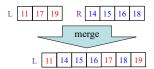

We'll call this process a "push down," as in push a value down until it is in its sorted position

Algorithm Complexity


- · Count the number of comparisons needed
- In the worst case, need i comparisons to push down an element in a sorted segment with i elements.

Lecture 24 15

How much work is a push down?



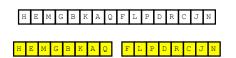
Algorithm Complexity (Q)

Which algorithm does Python's sort use?

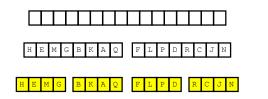
- Recursive algorithm that runs much faster than insertion sort for the same size list (when the size is big)!
- A variant of an algorithm called "merge sort"
- Based on the idea that sorting is hard, but "merging" two already sorted lists is easy.

Merge sort: Motivation

Since merging is easier than sorting, if I have two helpers, I'd...


- · Give each helper half the array to sort
- Then I get back their sorted subarrays and merge them.

What if those two helpers each had two sub-helpers?


And the sub-helpers each h

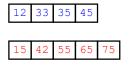
And the sub-helpers each had two sub-sub-helpers? And...

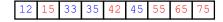
Subdivide the sorting task

Subdivide again

And again And one last time H E M G B K A Q F L P D R C J N H E M G B K A Q F L P D R C J N And merge again Now merge E G H M A B K Q E H G M B K A Q F L D P C R J N And again And one last time A B C D E F G H J K L M N P Q R A B E G H K M Q C D F J L N P R E G H M A B K Q D F L P C J N R

31

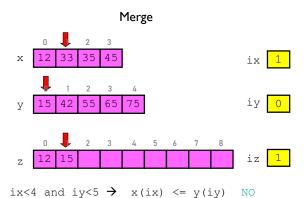

iz 0

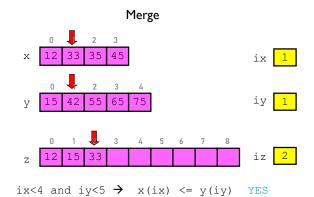

Done!

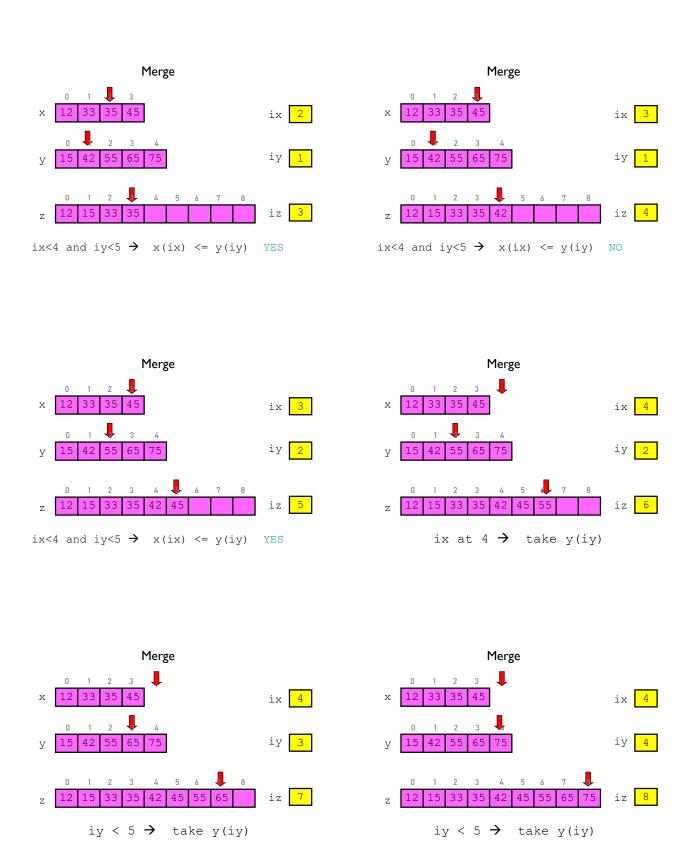
A B C D E F G H J K L M N P Q R

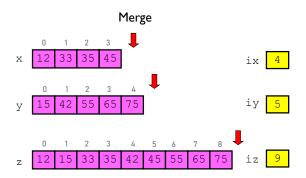
def mergeSort(li):
 """Sort list li using Merge Sort"""
 if len(li) > 1:
 # Divide into two parts
 mid= len(li)//2
 left= li[:mid]
 right= li[mid:]
 # Recursive calls
 mergeSort(left)
 mergeSort(right)
 # Merge left & right back to li
 ...

The central sub-problem is the merging of two sorted lists into one single sorted list






ix 0 1 2 3 12 33 35 45 ix 0 15 42 55 65 75 iy 0


Merge

ix<4 and iy<5 \rightarrow x(ix) <= y(iy) YES

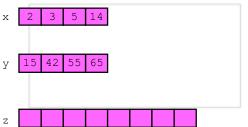

```
# Given lists x and y and list z, which has
# the combined length of x and y...
nx = len(x); ny = len(y)

ix = 0; iy = 0; iz = 0;
while ix<nx and iy<ny
    if x[ix] <= y[iy]:
        z[iz]= x[ix]; ix=ix+1
else:
        z[iz]= y[iy]; iy=iy+1
iz=iz+1

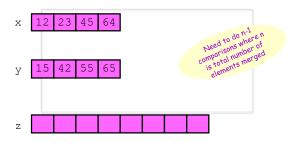
while ix<nx # copy any remaining x-values
    z[iz]= x[ix]; ix=ix+1; iz=iz+1

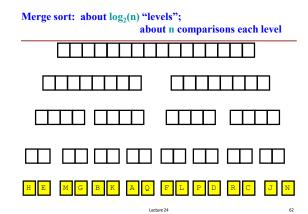
while iy<ny # copy any remaining y-values
    z[iz]= y[iy]; iy=iy+1; iz=iz+1</pre>
```

How do merge sort and insertion sort compare?


 Insertion sort: (worst case) makes i comparisons to insert an element in a sorted array of i elements. For an array of length n:

_____ for big n


Merge sort:


Lecture 24

Merge – best case scenario

Merge – worst case scenario

How do merge sort and insertion sort compare?

• Insertion sort: (worst case) makes i comparisons to insert an element in a sorted array of i elements. For an array of length n:

$$1+2+\ldots+(n-1)=n(n-1)/2, \ say \ n^2 \ for \ big \ n$$
 Order of magnitude difference

• Should we always use merge sort then? Python actually uses a variant that combines merge sort and insertion sort!