E AT A AR NN TR ST

http://www.cs.cornell.edu/courses/cs1110/2021sp

B R AN s T ARG P 7

Lecture 26:
More on Algorithms for Sorting

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

More Announcements

5/11/2021

Announcements

* A6 due on Friday
= Remember academic integrity
» Expected release dates of solutions and feedback
= AS solutions: Wed May 12
= A4 grades and feedback: Thurs May 13
= A6 solutions: Tues May 18
= A5 grades and feedback: Thurs May 20
= Final exam grades and feedback: Tues May 25
= A6 grades and feedback: Fri May 28

The Insertion Process of Insertion Sort

Discussion sections this week

= First 10 minutes dedicated to getting your started on A6

* Remaining time is office hour for your A6/Prelim 2 questions
Final Exam on May 215 1:30-4pm. Your assigned
exam session (in-person or online) is shown in CMS.
Submit a “regrade request” in CMS by May 12 if you
have a legitimate reason for requesting a change. If you
have an exceptional circumstance for switching from
in-person to online, you must upload to CMS your
college’s approval of your modality change.

Algorithms for Sorting

» Given a sorted list x, insert a number y such that
the result is sorted

* Sorted: arranged in ascending (small to big) order

sorted ‘/‘
2[a]efo] [¢]

[2[s]e]e[]

We’ll call this process a “push down,” as in push a
value down until it is in its sorted position

Well known algorithms

= focus on reviewing programming constructs (while loop) and
analysis

= will not use built-in methods such as sort, index, insert, etc.

Today we’ll discuss merge sort and compare it to
insertion sort, which we discussed last lecture

More on the topic in next course, CS 2110!

Algorithm Complexity

Count the number of comparisons needed

In the worst case, need i comparisons to push
down an element in a sorted segment with i
elements.

Lecture 24 15

http://www.cs.cornell.edu/courses/cs1110/2021sp

How much work is a push down?

2[=[-]- W
push down | This push down takes
a “?igu Hnn 2 comparisons
value
2[=l<]- W
This push down takes
ot ioun | EIHIS] | seomiane
“small” orst case scenario:
a STG 7 nn n comparisons
value needed to push down
HH into a length n sorted
HH segment.

Which algorithm does Python’s sort use?

5/11/2021

Algorithm Complexity (Q)

Count (approximately) the
number of comparisons

def push_down(b, K): needed to sort a list of
. ' length n
while k>0 and
k)

swap(b, k-1, A. ~1 comparison
B

def swap(b, h, K):

k=k-1

. ~n comparisons

def insertion_sort(b): C. ~n? comparisons
for i in range(l,len(b)):

push_down(b, i)

D. ~n? comparisons
E. TIdon’t know

e Recursive algorithm that runs much faster than
insertion sort for the same size list (when the size is big)!

e Avariant of an algorithm called “merge sort”

¢ Based on the idea that sorting is hard, but “merging”
two already sorted lists is easy.

L |11 l7|19| R |14 IS|16|18|

L|]]|14|15|16|I7|18|19|

Subdivide the sorting task

Merge sort: Motivation

Since merging is easier than sorting, if T
have two helpers, I'd...

* Give each helper half the array to sort

* Then I get back their sorted subarrays
and merge them.

O What if those two helpers
) each had two sub-helpers?

o And the sub-helpers each had
two sub-sub-helpers? And..

Subdivide again

(e f]efe«fa]of=f= e o]=fc o]
Lelef]cfef«fafo] [efe]efo]=]c]]

HEEEEEEEEREEEEEN
el]cfe]<fa]of [=]=]efo]=fc]]x]

efef]e] [ef«]afe] [elefe]o] [rlcfo]v]

And again

5/11/2021

And one last time

Lel=lde] [el<]= o] [=]=f=0o] [=lc]o]v]

aE R e BiE (e G0 EiEl ()

Now merge

HEpENENIEERENIEEREEIEE
(] Pedteftedted taled g] fled

And merge again

(ele] [efv] f=1«] (2o [=]ef [o1=] feI=] (o1
o] Dedled e tte] e d e e o

And again

HNEEENEEEREEEEEN
(lefelcfe«qufo] [clofe]ofe]vle]=]

elefefuf [(plsf«]e] [olefele] [efo]vx]

(elefele] [2]=0xfe] [ofefefe] [clo]v#]

L Lede] =] f21ef =] fol=] [e]=] (o1

And one last time

(rlefc]of=fe]cfe]ofx]r]u]x]efo]=]

(lefe]sfa]s]ufo] [clofeofu]vf=]=]

5/11/2021

def mergeSort(li):
"""Sort list 1li using Merge Sort"""
if len(li) > 1:
Divide into two parts
FEEEEEFEFEEEERERE mid= len(11)//2
left= 1li[:mid]
right= 1li[mid:]

Done!

Recursive calls
mergeSort (left)
mergeSort (right)

Merge left & right back to 1i

The central sub-problem is the merging of two
sorted lists into one single sorted list Merge

* _ ix [0]
[T5]22]55]e5]75] y_ iy [0]

[12]15]33]35]42[45]55]65]75] z_ iz [0]

ix<4 and iy<5 2> x(ix) <= y(iy) YES

0 113 4 5 6 1 8

ix<4 and iy<5 2 x(ix) <= y(iy) NO ix<4 and iy<5 2 x(ix) <= y(iy) VYES

U1214567 8
- N - (]

ix<4 and iy<5 2> x(ix) <= y(iy) YES

o 1 2 3 4167 8
- EZEEEEEEEEE R - (]

ix<4 and iy<5 2> x(ix) <= y(iy) YES

- EEEE w [

o 1 2 3 45618
o) EE21EES 31 221 5 5 G I

iy < 5 2 take y(iy)

5/11/2021

0 123l567 8
- B -]

ix<4 and iy<5 =2 x(ix) <= y(iy) NO

ix at 4 2 take y(iy)

iy < 5 2 take y(iy)

5/11/2021

Given lists x and y and list z, which has
Merge # the combined length of x and y...
nx = len(x); ny = len(y)
o 1 2 3 1

12 2) ix = 0; iy = 0; iz = 0;
® - ix while ix<nx and iy<ny
1 if =x[ix] <= yl[iy]:
0 1 2 3 4 z[iz]= x[ix]; ix=ix+1

v |15]42]55]65]75] iy else:

z[iz]= yl[iy]l; diy=iy+l
iz=iz+1l

0 ! 2 3 4 5 6 / 8 1 while ix<nx # copy any remaining x-values

. [12]15]33]35]a2[45]55[65]75] iz [9] zliz]= x[ix]; ix=ixtl; iz=iz+l

while iy<ny # copy any remaining y-values
z[iz]= y[iy]; iy=iy+l; iz=iz+l

def mergeSort(li):

. . 92
How do merge sort and insertion sort compare? "nnSort list 1li using Merge Sort"""

if len(li) > 1:
Divide into two parts
mid= len(li)/2

. left= 1li[:mid]

for big n right= 1i[mid:]

* Insertion sort: (worst case) makes i comparisons
to insert an element in a sorted array of i
elements. For an array of length n:

Recursive calls
* Merge sort: mergeSort (left)
mergeSort (right)

Merge left & right back to 1li

All the comparisons between list
elements are done during merge

Lecture 24 56 58

Given lists x and y and list z, which has
the combined length of x and y... Merge — best case scenario
nx = len(x); ny = len(y)

ix = 0; iy = 0; iz = 0;
while ix<nx and iy<n x
if | x[ix] <= yl[iy]):
z[iz]= x[ix]; ix=ix+1
else: 15[42]55]65
zliz]= yliy]; iy=iy+l Y ----
iz=iz+1

while ix<nx # copy any remaining x-values
z[iz]= x[ix]; ix=ix+1l; iz=iz+l z

while iy<ny # copy any remaining y-values
z[iz]= y[iy]; 4iy=iy+l; iz=iz+l

5/11/2021

Merge sort: about log,(n) “levels”;
Merge — worst case scenario about n comparisons each level

HEEEEEEEEREEEEEN
et CLETPTiil P TPTTTy
zO

WNe? -50‘\5;:\0 <
o

; A\
v |15[42[55]65] (1100110 O OII1d

HEpENENIEERENIEEREEIEE
(] Pedteffedied tadle] E=d 1] =]l

Lecture 24 62

« [zl

How do merge sort and insertion sort compare?

* Insertion sort: (worst case) makes i comparisons
to insert an element in a sorted array of i
elements. For an array of length n:

[4+2+...+(n-1) = n(n-1)/2, say n? for bign
"~ Order of

._—— magnitude
* Merge sort: n-log,(n) comparisons difference

« Should we always use merge sort then? Python actually uses a
variant that combines merge sort and insertion sort!

