Lecture 26:
More on Algorithms for Sorting

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Fan, D. Gries, L. Lee,
S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2021sp

Announcements

* Discussion sections this week
= First 10 minutes dedicated to getting your started on A6

* Remaining time 1s office hour for your A6/Prelim 2 questions

* Final Exam on May 215 1:30-4pm. Your assigned
exam session (1n-person or online) 1s shown in CMS.
Submit a “regrade request’ in CMS by May 12 1f you
have a legitimate reason for requesting a change. If you
have an exceptional circumstance for switching from
in-person to online, you must upload to CMS your
college’s approval of your modality change.

More Announcements

* A6 due on Friday

* Remember academic integrity

» Expected release dates of solutions and feedback
= A5 solutions: Wed May 12
= A4 grades and feedback: Thurs May 13
= A6 solutions: Tues May 18
= A5 grades and feedback: Thurs May 20
= Final exam grades and feedback: Tues May 25
A6 grades and feedback: Fr1 May 28

Algorithms for Sorting

* Well known algorithms

= focus on reviewing programming constructs (while loop) and
analysis

= will not use built-in methods such as sort, index, insert, etc.

* Today we’ll discuss merge sort and compare 1t to
insertion sort, which we discussed last lecture

* More on the topic in next course, CS 2110!

The Insertion Process of Insertion Sort

* (1ven a sorted list x, insert a number y such that
the result 1s sorted

* Sorted: arranged 1n ascending (small to big) order

: sorted | A/\

213619 8

WEe’'ll call this process a “push down,” as in push a
value down until it is in its sorted position

Algorithm Complexity

* Count the number of comparisons needed

* In the worst case, need 1 comparisons to push
down an element 1n a sorted segment with 1
clements.

Lecture 24

15

How much work is a push down?

push down _|
a "big"

_—

value

push down
a “small”
value

—

2

3

6

9

8

This push down takes
2 comparisons

This push down takes
4 comparisons.
Worst case scenario:
n comparisons
needed to push down
into a length n sorted
segment.

16

Algorithm Complexity (Q)

def swap(b, h, k): Count (approximately) the
5 number of comparisons

def push_down(b, K): needed to sort a list of
. | length n
while k>0 and
swap(b, k-1, k) A. ~ 1 comparison
k= k-1

B. ~n comparisons

def insertion_sort(b): C. ~ ﬂj comparisons
= . D. —~ .
for i in range(l,len(b)): n° comparisons

push_down(b, i)

E. Idon’t know

17

Which algorithm does Python’s sort use?

e Recursive algorithm that runs much faster than
insertion sort for the same size list (when the size is big)!

e A variant of an algorithm called “merge sort”

e Based on the idea that sorting is hard, but “merging”
two already sorted lists is easy.

L

11

17119

L |11

R

14

15

16

18

m

erge

— meree L

14

15

16

17

18

19

20

Merge sort: Motivation
-~ —

4

Since merging is easier than sorting, if I
have two helpers, I'd...

* Give each helper half the array to sort

—— + Then I get back their sorted subar%\s
and merge them.

Q What if those two helpers
) each had two sub-helpers?

O And the sub-helpers each had
two sub-sub-helpers? And...

Subdivide the sorting task

clefufels]x]afofe]r]efof=]c]Ify
clefufelslx]afo] [fr]e]ofrfc]I]y

22

Subdivide again

clefufelslx]afo] [fr]e]ofrfc]I]y
Blafof [=fr]e]e

23

And again

(LTI TTIITTTITTT]
ENEEEEENRNENNEEEN

Blxafof [=fr]e]e

24

And one last time

ENNEEEEEEEEEEEER
(LIl LI ITTTd

ENENREEEEEEENEEREEEE

L Lt L By L L
]]]

Now merge

ENNEEEEEEEEEEEER
(LIl LI ITTTd

]]] 7]v].

And merge again

Alelefe] []e]r]r

27

And again

Alefefelu]xfufe] [e]e]rfofr]v]e]x

Alefxfe

olefefe

28

And one last time

Alefefolefefefulofefr]u]ufelo]r

Alefefelu]xufe] [efe]rfofr]v]e]x

29

Done!

Alefefolefefefulofefr]u]ufelo]r

30

def mergeSort(1l1i):
"""Sort list l1li using Merge Sort"""

if len(li) > 1:
Divide into two parts
mid= len(li)//2
left= 1li[:mid]
right= 1li[mid:]

Recursive calls
mergeSort (left)
mergeSort (right)

Merge left & right back to 1li

31

The central sub-problem is the merging of two
sorted lists into one single sorted list

‘12‘33‘35‘45‘

‘15‘42‘55‘65‘75‘

‘12‘15‘:{3‘35‘42‘4&3y55‘65‘75‘

112345678
T T T T - o]

ix<4 and iy<h =2 x(ix) <= vy (iy) YES

01234567 8

1x<4 and iy<h =2 x(ix) <= y(iy) NO

0113 4 5 6 1 8

ix<4 and iy<h =2 x(ix) <= vy (iy) YES

01214567 8

ix<4 and iy<h =2 x(ix) <= vy (iy) YES

0123lr567 8
- [EEEEE T T o= L

1x<4 and iy<h =2 x(ix) <= y(iy) NO

012341678

ix<4 and iy<h =2 x(ix) <= vy (iy) YES

[
iy

0123456‘7 8
EEEEEEET] -

ix at 4 =2 take y(ivy)

Given lists x and y and list z, which has
the combined length of x and y...
nx = len(x); ny = len(y)

ix = 0; 1y = 0, iz = 0;
while i1x<nx and 1iy<ny
if x[ix] <= yl[iy]:

z[iz]= x[ix],; ix=ix+1
else:

z[iz]= y[iy]; iy=iy+l
i1z=iz+1

while ix<nx # copy any remaining x-values
z[i1z]= x[1x],; 1ix=ix+l; iz=iz+l

while iy<ny # copy any remaining y-values
z[iz]= y[iy], 4iy=iy+1l; iz=iz+l

How do merge sort and insertion sort compare?

* Insertion sort: (worst case) makes 1 comparisons
to insert an element 1n a sorted array of 1
clements. For an array of length n:

for big n

* Merge sort:

Lecture 24

56

def mergeSort(1l1i):
"""Sort list l1li using Merge Sort"""

if len(li) > 1:
Divide into two parts
mid= len(li) /2
left= 1li[:mid]
right= 1li[mid:]

Recursive calls
mergeSort (left)
mergeSort (right)

Merge left & right back to 1li

All the comparisons between list
clements are done during merge

58

Given lists x and y and list z, which has
the combined length of x and y...
nx = len(x); ny = len(y)

ix = 0; 1y = 0, iz = 0;
while i1x<nx and iy<ny
if | x[ix] <= yliy]):

z[iz]= x[ix],; ix=ix+1
else:

z[iz]= y[iy]; iy=iy+l
i1z=iz+1

while ix<nx # copy any remaining x-values
z[i1z]= x[1x],; 1ix=ix+l; iz=iz+l

while iy<ny # copy any remaining y-values
z[iz]= y[iy], 4iy=iy+1l; iz=iz+l

Merge — best case scenario

Merge — worst case scenario

Merge sort: about log,(n) “levels”;
about n comparisons each level

ENNEEEEEEEEEEEER
(LIl LI ITTTd

ENENREEEEEEENEEREEEE

L Lt L By L L
]]]

How do merge sort and insertion sort compare?

* Insertion sort: (worst case) makes 1 comparisons
to insert an element 1n a sorted array of 1
clements. For an array of length n:

1+2+...+(n-1) =n(n-1)/2, say n? for big n
T~ Order of
. ——— magnitude

* Merge sort: n-log,(n) comparisons difference

* Should we always use merge sort then? Python actually uses a
variant that combines merge sort and insertion sort!

