
5/11/2021

1

Algorithm Complexity (Q)

def swap(b, h, k):

def push_down(b, k):

while k > 0 and b[k-1] > b[k]:

swap(b, k-1, k)

k= k-1

def insertion_sort(b):

for i in range(1,len(b)):

push_down(b, i)

17

Count (approximately) the 

number of comparisons

needed to sort a list of 

length n

A. ~ 1 comparison

B. ~ n comparisons

C. ~ n2 comparisons

D. ~ n3 comparisons

E. I don’t know

18

Algorithm Complexity (A)

• Count the number of comparisons needed

• In the worst case, need i comparisons to push 
down an element in a sorted segment with i
elements.  

• For a list of length n

▪ 1st push down:  1 comparison 

▪ 2nd push down: 2 comparisons (worst case)

▪ 1+2+…+ (n-1) = n*(n-1)/2 , say, n2 for big n

• For fun, check out this visualization: 
https://www.youtube.com/watch?v=xxcpvCGrCBc

Complexity of algorithms discussed so far

• Linear search: on the order of n

• Binary search: on the order of log2 n

▪ Binary search is faster but requires sorted data

• Insertion sort: on the order of n2

• Next, let’s look at merge sort

19

https://www.youtube.com/watch?v=xxcpvCGrCBc

