Some old exam questions

1. A Pascal’s triangle with levels 0 to 4 is shown below. Level 0 has a single value, and each value on subsequent levels is the sum of the two entries diagonally above in the previous level of the triangle. For example, the value 6 in level 4 is the sum of the values 3 and 3 in level 3.

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1

 level 0
 level 1
 level 2
 level 3
 level 4

Complete function `pascalVector` below to return the row vector corresponding to a specified level of Pascal’s triangle. For example, if level `lev` is 4, then the returned vector must be `[1, 4, 6, 4, 1]`. Assume `lev` is a non-negative integer. The only Matlab built-in functions allowed are `zeros`, `ones`, and `length`. Do not use the formula for binomial coefficients to solve this problem. Use a loop (or loops): the vector for each level is based on the vector from the previous level.

```matlab
function p = pascalVector(lev)
    % p is the vector corresponding to level lev of Pascal's triangle
```

2. Complete the following function.

```matlab
function MyHistogram(v)
    % Draw a histogram for the data in v using asterisks in the COMMAND WINDOW (not figure window).
    % v is a vector of non-negative values.
    % The histogram is scaled so that the largest data value is represented by
    % ten asterisks. Round as necessary in order to draw whole asterisks.
    % Example: v = [12 4.1 0.5 9.2 20]
    % Output in Command Window:
    % *****
    % **
    % *
    % ***
    % ********
```

3. (a) Implement function `isIn` as specified. *The only built-in function that you may use is `length`.*

```matlab
function alfa = isIn(x, v)
    % alfa is 1 if value x is in vector v. Otherwise alfa is 0.
    % x is an integer. v is a vector of integers, possibly of length 0.
    % If v has length 0 (v is the empty vector), then alfa is 0.
```

(b) Let a and b be non-empty vectors of integers. We define the intersection set of a and b to be the distinct values that appear in both vectors a and b. For example, if

```matlab
a = [4 2 2 5 3 8 6]
b = [3 5 1 6 4 5 5 0 7]
```

then the intersection set of a and b is the vector `[4 5 3 6]` (the order of the values in the vector does not matter). Implement function `intersectionSet` as specified, making effective use of function `isIn`. *The only built-in function that you may use is `length`.*

```matlab
function s = intersectionSet(a,b)
    % a and b are vectors of integers. a and b are not empty.
    % Vector s contains only the values that are in both vectors a and b.
    % Vector s contains distinct values. s may be empty.
```
(a) Implement this function:

```matlab
function z = overlap(diskA, diskB)
    % z is 1 (true) if diskA and diskB overlap; otherwise z is 0 (false).
    % diskA and diskB are each a disk structure with the following fields:
    % x: x-coordinate of center of disk
    % y: y-coordinate of center of disk
    % radius: radius of disk
```

(b) Implement the following function to return the indices of disk triplets that overlap. Three disks form a triplet if every disk overlaps with each of the other two. Make effective use of function `overlap` from part (a). Your code should be efficient—avoid unnecessary iterations.

```matlab
function idx = diskTriplets(D)
    % D is a 1-d array of disk structures; each structure has fields as defined in
    % part (a). Assume D has a length greater than 3.
    % idx is a vector of indices indicating all triplet overlap combinations. For example,
    % if disks 2, 4, and 5 form a triplet and disks 3, 4, and 6 form a triplet, idx
    % should be the vector [2 4 5 3 4 6]. Other orderings of triplets are acceptable,
    % however each triplet should only appear once.
```