1 Is one Interval in some array of Intervals?

Suppose we have an array of Intervals (1,.5), (2,.7), and (.8,.9). If we ask whether an Interval (.3,.4) “is in” the array of Intervals, we will answer “yes, yes, no” since (.3,.4) is in (.1,.5), (.3,.4) is in (.2,.7), but (.3,.4) is not in (.8,.9).

Recall that class Interval has an isIn method that would be useful here. Implement the following function (independent function, not an instance method):

```matlab
function tf = isInRange(inter, interArray)
    % inter: an Interval
    % interArray: 1-d array of Intervals
    % tf: a logical vector (1s and 0s) the same length as interArray where
    % tf(k)=1 if inter "is in" interArray(k); otherwise tf(k)=0.
```

Later using MATLAB, test your function by typing the following in the Command Window:

```matlab
a= intervalArray(4); % Create a length 4 array of Intervals using the
% function implemented in lecture.

b= Interval(.3,.5)

v= isInRange(b,a) % Why isn't the function call something.isInRange(...) ?
% Answer: isInRange isn't an instance method; it's its own function.
```

2 Analyze class LocalWeather

A partially completed classdef for LocalWeather is given on the next page. Read the properties and the constructor of class LocalWeather; ask questions if there is anything that you do not understand. Answer the following questions and then complete methods getAnnualPrecip and getMonthlyAveTemps.

2.1 By reading class LocalWeather above and the file ithacaWeather.txt, answer the following questions.

```matlab
ithaca= LocalWeather('ithacaWeather.txt')
disp(ithaca.city) % What is the output? ______________________________

disp(ithaca.precip) % What is the output? ______________________________

disp(ithaca.precip(11)) % What is the output? ______________________________

a= ithaca.temps % What is the type of a? ______________________________

b= ithaca.temps(11) % What is the type of b? ______________________________

disp(ithaca.temps(11).left) % What is displayed? What is it? ______________
```

2.2 Implement function getAnnualPrecip, which calculates and returns the total annual precipitation. If any month’s precipitation data is missing, the returned value should be NaN, a value in MATLAB of type double that indicates that a value is not-a-number. Note that any arithmetic operation on NaN will result in NaN.

2.3 Implement function getMonthlyAveTemps which returns the vector (length 12) of monthly average temperatures. Calculate a month’s average temperature as the average between the month’s high and low temperatures. See the function comment of getMonthlyAveTemps for how any missing temperature (NaN) should be handled. The built-in function isnan can be used to check whether a variable stores the value NaN; isnan(x) returns true (1) if x is NaN and false (0) otherwise.

Later, using MATLAB, type in your method bodies and test the updated class by creating a LocalWeather object and calling its methods.
classdef LocalWeather < handle

% Weather data (monthly low, high, and precip) for a city from a standard
% city weather data file.

properties
 city= ''; % City name string
 temps= Interval.empty(); % array of 12 Intervals, each (monthly low, monthly high)
 precip % numeric vector of length 12, each monthly precipitation
end

methods
 function lw = LocalWeather(fname)
 if nargin==1
 fid= fopen(fname, 'r'); % Get city name
 s= fgetl(fid);
 lw.city= s(3:length(s)); % Read pass headers lines (next 3 lines)
 for k=1:3
 s= fgetl(fid);
 end % Read monthly data (next 12 lines)
 for k= 1:12
 s= fgetl(fid);
 lw.temps(k)= Interval(str2double(s(4:8)), ...
 str2double(s(12:16)));
 lw.precip(k)= str2double(s(20:24));
 end % Read monthly data (next 12 lines)
 fclose(fid);
 end % nargin==1
 end

 function showMonthData(self, m)
 % Show data for month m. m is an integer and 1<=m<=12.
 mo= {'Jan','Feb','Mar','Apr','May','June', ...
 'July','Aug','Sep','Oct','Nov','Dec'};
 fprintf('%s Data
', mo{m})
 fprintf('Temperature range: ') disp(self.temps(m))
 fprintf('Average precipitation: %.2f
', self.precip(m))
 end

 function p = getAnnualPrecip(self)
 % If any month is missing precip data, display a warning message
 % and p is NaN. Otherwise p is annual precipitation.
 p=0;
 end

 function tempVec = getMonthlyAveTemps(self)
 % tempVec is length 12 vector of monthly average temperatures.
 % tempVec(m) is average between month m's high and low temps.
 % If a month is missing either high or low temp (NaN), then that
 % month's average is set to the high or low non-NaN value. If a
 % month is missing both the high and low temp (both NaN), then that
 % month's average is set to NaN.
 tempVec= zeros(1,12);
 end

 function showCityName(self)
 disp(self.city)
 end
end %methods
end %classdef