- Previous Lecture:
 - Image processing
 - Add frame, mirror

- Today’s Lecture:
 - More image processing
 - Flipping an image
 - Color \rightarrow grayscale
 - “Noise” filtering
 - (Watch online/read in book: Edge finding example)

- Announcements:
 - Discussion this week in the classrooms as listed on Student Center
 - Project 4 due Mon Oct 24th
 - Pick up your prelim paper during consulting hours
Grayness: a value in $[0..255]$

- $0 = \text{black}$
- $255 = \text{white}$

These are integer values
Type: `uint8`

<table>
<thead>
<tr>
<th>150</th>
<th>149</th>
<th>152</th>
<th>153</th>
<th>152</th>
<th>155</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>150</td>
<td>153</td>
<td>154</td>
<td>153</td>
<td>156</td>
</tr>
<tr>
<td>153</td>
<td>151</td>
<td>155</td>
<td>156</td>
<td>155</td>
<td>158</td>
</tr>
<tr>
<td>154</td>
<td>153</td>
<td>156</td>
<td>157</td>
<td>156</td>
<td>159</td>
</tr>
<tr>
<td>156</td>
<td>154</td>
<td>158</td>
<td>159</td>
<td>158</td>
<td>161</td>
</tr>
<tr>
<td>157</td>
<td>156</td>
<td>159</td>
<td>160</td>
<td>159</td>
<td>162</td>
</tr>
</tbody>
</table>
A color picture is made up of RGB matrices → 3-d array

E.g., color image data is stored in a 3-d array A:

$$0 \leq A(i,j,1) \leq 255$$
$$0 \leq A(i,j,2) \leq 255$$
$$0 \leq A(i,j,3) \leq 255$$
A color picture is made up of RGB matrices → 3-d array

Operations on images amount to operations on matrices!
Example: Mirror Image

1. Read **LawSchool.jpg** from memory and convert it into an array.
2. Manipulate the Array.
3. Convert the array to a jpg file and write it to memory.
Reading and writing jpg files

% Read jpg image and convert to
% a 3D array A
A = imread('LawSchool.jpg');

% Write 3D array B to memory as
% a jpg image
imwrite(B,'LawSchoolMirror.jpg')
A 3-d array as 3 matrices

\[[\text{nr}, \text{nc}, \text{np}] = \text{size}(A) \quad \% \text{ dimensions of 3-d array } A\]

- **#rows:**
- **#columns:**
- **#layers (pages):**

\[
\begin{align*}
\text{M1} &= A(:,:,1) \\
\text{M2} &= A(:,:,2) \\
\text{M3} &= A(:,:,3)
\end{align*}
\]

\[
\begin{align*}
\text{A}(1:\text{nr},1:\text{nc},1) &= 4\text{-by}-6 \\
\text{M1} &= A(:,:,1) \\
\text{M2} &= A(:,:,2) \\
\text{M3} &= A(:,:,3)
\end{align*}
\]
% Store mirror image of A in array B

\[\text{[nr, nc, np]} = \text{size}(A); \]

\textit{for } r = 1:nr

\textit{for } c = 1:nc

\hspace{1cm} \text{B}(r, c) = \text{A}(r, \text{nc} - c + 1);

\textit{end}

\textit{end}
%Store mirror image of A in array B

[nr, nc, np] = size(A);
for r = 1:nr
 for c = 1:nc
 for p = 1:np
 B(r, c, p) = A(r, nc-c+1, p);
 end
 end
end
end
Both fragments create a mirror image of A.

true
false

A B
\[\text{Both fragments create a mirror image of } A. \]

\[A \quad \text{true} \]

\[B \quad \text{false} \]
% Make mirror image of A -- the whole thing

A = imread('LawSchool.jpg');
[nr,nc,np] = size(A);

B = zeros(nr,nc,np);
B = uint8(B); % Type for image color values

for r = 1:nr
 for c = 1:nc
 for p = 1:np
 B(r,c,p) = A(r,nc-c+1,p);
 end
 end
end

imshow(B) % Show 3-d array data as an image
imwrite(B,'LawSchoolMirror.jpg')
Vectorized code simplifies things…
Work with a whole column at a time

Column c in B
is column nc-c+1 in A
Consider a single matrix (just one layer)

\[
\begin{align*}
[\text{nr}, \text{nc}, \text{np}] &= \text{size}(A); \\
\text{for } c &= 1:\text{nc} \\
&B(1:\text{nr}, c) = A(1:\text{nr}, \text{nc}-c+1); \\
\end{align*}
\]

end
Consider a single matrix (just one layer)

\[
[nr,nc,np] = \text{size}(A);
\]

\[
\text{for } c = 1:nc
\]

\[
B(:,c) = A(:,nc-c+1);
\]

\[
\text{end}
\]

The colon says “all indices in this dimension.” In this case it says “all rows.”
Now repeat for all layers

```matlab
[nr,nc,np] = size(A);
for c = 1:nc
    B(:,c,1) = A(:,nc-c+1,1)
    B(:,c,2) = A(:,nc-c+1,2)
    B(:,c,3) = A(:,nc-c+1,3)
end
```
Vectorized code to create a mirror image

\[
\begin{align*}
A &= \text{imread('LawSchool.jpg')} \\
[nr,nc,np] &= \text{size}(A); \\
\text{for } c &= 1:nc \\
 B(:,c,1) &= A(:,nc-c+1,1) \\
 B(:,c,2) &= A(:,nc-c+1,2) \\
 B(:,c,3) &= A(:,nc-c+1,3) \\
\text{end} \\
\text{imwrite}(B,'LawSchoolMirror.jpg')
\end{align*}
\]
Even more compact vectorized code to create a mirror image...

```matlab
for c = 1:nc
    B(:,c,1) = A(:,nc-c+1,1)
    B(:,c,2) = A(:,nc-c+1,2)
    B(:,c,3) = A(:,nc-c+1,3)
end

B = A(:,nc:-1:1,:)```
Example: color $\rightarrow$ black and white

Can “average” the three color values to get one gray value.
Averaging the RGB values to get a gray value

\[ \frac{R}{3} + \frac{G}{3} + \frac{B}{3} \]

\[ .3R + .59G + .11B \]
Averaging the RGB values to get a gray value

\[
M(i,j) = 0.3R(i,j) + 0.59G(i,j) + 0.11B(i,j)
\]

for \( i = 1:m \)
for \( j = 1:n \)
end
end

scalar operation
Averaging the RGB values to get a gray value

\[ M = 0.3R + 0.59G + 0.11B \]
Here are 2 ways to calculate the average. Are gray value matrices g and h the same given image data A?

\[
\begin{align*}
\text{for } r &= 1 : nr \\
&\quad \text{for } c = 1 : nc \\
&\quad \quad g(r,c) = \frac{A(r,c,1)}{3} + \frac{A(r,c,2)}{3} + \ldots \\
&\quad \quad \Quad
Matlab has a built-in function to convert from color to grayscale, resulting in a 2-d array:

\[ B = \text{rgb2gray}(A) \]
Clean up “noise” — median filtering
Dirt in the image!

Note how the “dirty pixels” look out of place.

150 149 152 153 152 155
151 150 153 154 153 156
153 2 3 156 155 158
154 2 1 157 156 159
156 154 158 159 158 161
157 156 159 160 159 162
What to do with the dirty pixels?

Assign “typical” neighborhood gray values to “dirty pixels”

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>149</td>
<td>152</td>
<td>153</td>
<td>152</td>
<td>155</td>
</tr>
<tr>
<td>151</td>
<td>150</td>
<td>153</td>
<td>154</td>
<td>153</td>
<td>156</td>
</tr>
<tr>
<td>153</td>
<td>?</td>
<td>?</td>
<td>154</td>
<td>156</td>
<td>155</td>
</tr>
<tr>
<td>154</td>
<td>?</td>
<td>?</td>
<td>157</td>
<td>156</td>
<td>159</td>
</tr>
<tr>
<td>156</td>
<td>154</td>
<td>158</td>
<td>159</td>
<td>158</td>
<td>161</td>
</tr>
<tr>
<td>157</td>
<td>156</td>
<td>159</td>
<td>160</td>
<td>159</td>
<td>162</td>
</tr>
</tbody>
</table>
What are “typical neighborhood gray values”?

Median
Mean

radius 1
radius 2
Median Filtering

- Visit each pixel
- Replace its gray value by the median of the gray values in the “neighborhood”
Using a radius 1 “neighborhood”

Before

After
Visit every pixel; compute its new value.

\[
\begin{array}{c}
\text{for } i=1:m \\
\quad \text{for } j=1:n \\
\quad \quad \text{Compute new gray value for pixel \((i,j)\).} \\
\quad \text{end} \\
\text{end}
\end{array}
\]
Replace \( \square \) with the median of the values under the window.
Replace $\times$ with the median of the values under the window.
What we need...

- (1) A function that computes the median value in a 2-dimensional array C:

  \[ m = \text{medVal}(C) \]

- (2) A function that builds the filtered image by using median values of radius r neighborhoods:

  \[ B = \text{medFilter}(A, r) \]
Computing the median

\[
x : \begin{array}{cccccc}
21 & 89 & 36 & 28 & 19 & 88 & 43
\end{array}
\]

\[
x = \text{sort}(x)
\]

\[
x : \begin{array}{cccccc}
19 & 21 & 28 & 36 & 43 & 88 & 89
\end{array}
\]

\[
n = \text{length}(x); \quad % \ n = 7
\]

\[
m = \text{ceil}(n/2); \quad % \ m = 4
\]

\[
\text{med} = x(m); \quad % \ \text{med} = 36
\]

If \( n \) is even, then use:

\[
\text{med} = x(m)/2 + x(m+1)/2
\]
function med = medVal(C)
    [nr, nc] = size(C);
    x = zeros(1, nr*nc);
    for r = 1:nr
        x((r-1)*nc+1:r*nc) = C(r,:);
    end
    %Compute median of x and assign to med
    % ...
Back to filtering…

\[
\begin{array}{cccccccccc}
\rotatebox{90}{\( m = 9 \)} & & & & & & & & & \\
\rotatebox{90}{\( n = 18 \)} & & & & & & & & & \\
\end{array}
\]

\begin{verbatim}
for i=1:m
  for j=1:n
    Compute new gray value for pixel (i,j)
  end
end
\end{verbatim}
When window is inside...

New gray value for pixel (7,4) =

\[ \text{medVal}( A(6:8,3:5) ) \]
When window is partly outside...

New gray value for pixel (7,1) =

\[
\text{medVal}( A(6:8,1:2) )
\]
When window is partly outside...

New gray value for pixel \((9,18)\) = 

\[
\text{medVal}( A(8:9,17:18) )
\]
The Pixel (i,j) Neighborhood

\[ i_{\text{Min}} = i - r \]
\[ i_{\text{Max}} = i + r \]
\[ j_{\text{Min}} = j - r \]
\[ j_{\text{Max}} = j + r \]
\[ C = A(i_{\text{Min}}:i_{\text{Max}},j_{\text{Min}}:j_{\text{Max}}) \]
The Pixel (i,j) Neighborhood

\[ i_{\text{Min}} = \max(1, i-r) \]
\[ i_{\text{Max}} = \min(m, i+r) \]
\[ j_{\text{Min}} = \max(1, j-r) \]
\[ j_{\text{Max}} = \min(n, j+r) \]
\[ C = A(i_{\text{Min}}:i_{\text{Max}}, j_{\text{Min}}:j_{\text{Max}}) \]
function $B = \text{medFilter}(A, r)$
\text{\% B from A via median filtering}
\text{\% with radius r neighborhoods.}

$$[m,n] = \text{size}(A);$$

$B = \text{uint8}(\text{zeros}(m,n));$

\text{for i=1:m}
\text{\hspace{1em}for j=1:n}
\text{\hspace{2em}$C = \text{pixel (i,j) neighborhood}$}
\text{\hspace{2em}$B(i,j) = \text{medVal}(C);$}
\text{\hspace{1em}end}
\text{\hspace{1em}end}$

end
$B = \text{medianFilter}(A, 3)$