Inheritance

Inheritance relationships are shown in a class diagram, with the arrow pointing to the parent class.

- An is-a relationship: the child is a more specific version of the parent. E.g., a trick die is a die.

- Multiple inheritance: can have multiple parents e.g., Matlab

- Single inheritance: can have one parent only e.g., Java

Overriding methods

- Subclass can override definition of inherited method
- New method in subclass has the same name (but has different method body)

Overridden methods: which version gets invoked?

To create a TrickDie: call the TrickDie constructor, which calls the Die constructor, which calls the roll method. Which roll method gets invoked?

Overriding methods

- Subclass can override definition of inherited method
- New method in subclass has the same name (but has different method body)

Which method gets used?!

The object that is used to invoke a method determines which version is used.

- Since a TrickDie object is calling method roll, the TrickDie's version of roll is executed.
- In other words, the method most specific to the type (class) of the object is used.

Accessing superclass' version of a method

- Subclass can override superclass' methods
- Subclass can access superclass' version of the method
Important ideas in inheritance

- Keep common features as high in the hierarchy as reasonably possible
- Use the superclass’ features as much as possible
- “Inherited” ⇒ “can be accessed as though declared locally”
 (private member in superclass exists in subclasses; they just cannot be accessed directly)
- Inherited features are continually passed down the line

(Cell) array of objects

- A cell array can reference objects of different classes
 \[A(1) = \text{Die}(); \]
 \[A(2) = \text{TrickDie}(2, 10); \quad \% \quad \text{OK} \]
- A simple array can reference objects of only one single class
 \[B(1) = \text{Die}(); \]
 \[B(2) = \text{TrickDie}(2, 10); \quad \% \quad \text{ERROR} \]

Recursion

- The Fibonacci sequence is defined recursively:
 \[F(1) = 1, \quad F(2) = 1, \]
 \[F(3) = F(1) + F(2) = 2 \]
 \[F(4) = F(2) + F(3) = 3 \]
 \[F(k) = F(k-2) + F(k-1) \]
 It is defined in terms of itself; its definition invokes itself.
- Algorithms, and functions, can be recursive as well. I.e., a function can call itself.
- Example: remove all occurrences of a character from a string

 Original problem: remove all the blanks in string \textit{s}
 \['g' c a t c g g a c ' \rightarrow 'gcaatcgac' \]

Example: removing all occurrences of a character

- Can solve using iteration—check one character (one component of the vector) at a time

 Original problem
 Decompose into 2 parts
 1. remove blank in \textit{s}(1)
 2. remove blanks in \textit{s}(2:length(\textit{s}))

 Iteration: Divide problem into sequence of equal-sized, identical subproblems

See RemoveChar_loop.m
function s = removeChar(c, s)
% Return string s with character c removed
 if length(s)==0 % Base case: nothing to do
 return
 else
 if s(1)~=c % return string is
 % s(1) and remaining s with char c removed
 else % s(1)==c
 % return string is just
 % the remaining s with char c removed
 end
 end
function s = removeChar(c, s)
if length(s)==0
 return
else
 if s(1)~=c
 s = [s(1) removeChar(c, s(2:length(s)))];
 else
 s = removeChar(c, s(2:length(s)));
 end
end

Key to recursion
- Must identify (at least) one **base case**, the “trivially simple” case
 - no recursion is done in this case
- The recursive case(s) must reflect **progress towards the base case**
 - E.g., give a **shorter vector** as the argument to the recursive call – see `removeChar`

Divide-and-conquer methods, such as **recursion**, is useful in geometric situations

Chop a region up into triangles with smaller triangles in “areas of interest”

Recursive mesh generation

Why is mesh generation a divide-&-conquer process?
Let’s draw this graphic

A “level-1” partition of the triangle
(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white) triangle to obtain the “level-2” partitioning

The “level-2” partition of the triangle
The “level-4” partition of the triangle

The basic operation at each level

if the triangle is small
 Don’t subdivide and just color it yellow.
else
 Subdivide:
 Connect the side midpoints;
 color the interior triangle magenta.
 apply same process to each outer triangle.
end

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.
if L==0
 % Recursion limit reached; no more subdivision required.
 fill(x,y,'y') % Color this triangle yellow
else
 % Need to subdivide: determine the side midpoints; connect
 % midpts to get “interior triangle”; color it magenta.
 a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
 b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
 fill(a,b,'m')
 % Apply the process to the three “corner” triangles...
end

Key to recursion

- Must identify (at least) one base case, the “trivially simple” case
- No recursion is done in this case
- The recursive case(s) must reflect progress towards the base case
 - E.g., give a shorter vector as the argument to the recursive call – see removeChar
 - E.g., ask for a lower level of subdivision in the recursive call – see MeshTriangle