Announcements:

- Discussion section this week in Hollister 464 computer lab
- Project 1 (P1) due Thurs, 9/1, at 11pm
- Pay attention to Academic Integrity
- You can see any TA for help, not just your discussion TA
- Matlab consultants at ACCEL Green Rm (Carpenter Hall 2nd fl. computing facility) 5-10pm Sunday to Thursday
- Piazza – “Q & A system” for all students in CS1112. Use it for clarification only—do not ask (answer) homework questions and do not give hints on homework. Will be monitored by TAs.
- Please register your clicker using the link on the course website (redirected to Cornell IT)—not through Blackboard
- Remote MATLAB access: newly joined students will have accounts tomorrow
Previous Lecture (and lab):
 - Variables & assignment
 - Built-in functions
 - Input & output
 - Good programming style (meaningful variable names; use comments)

Today’s Lecture:
 - Branching (conditional statements)
Quick review

- **Variable**
 - A named memory space to store a value

- **Assignment operator:** =
 - Let x be a variable that has a value. To give variable y the same value as x, which statement below should you write?
 $$ x = y \quad \text{or} \quad y = x $$

- **Script (program)**
 - A sequence of statements saved in an m-file

- **; (semi-colon)**
 - Suppresses printing of the result of assignment statement
- So far, all the statements in our scripts are executed in order
- We do not have a way to specify that some statements should be executed only under some condition
- We need a new language construct…
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
What are the critical points?

- End points: $x = L, x = R$
- $\{ x \mid q'(x) = 0 \}$

$$q(x) = x^2 + bx + c$$

$$q'(x) = 2x + b$$

$$q'(x_c) = 0 \implies x_c = -\frac{b}{2}$$
Problem 1

Write a code fragment that prints “yes” if $q(x)$ increases across the interval and “no” if it does not.
% Quadratic \(q(x) = x^2 + bx + c \)

\[
b = \text{input('Enter b: ')};
\]

\[
c = \text{input('Enter c: ')};
\]

\[
L = \text{input('Enter L: ')};
\]

\[
R = \text{input('Enter R: ')};
\]

% Determine whether \(q \) increases
% across \([L,R]\)

\[
xc = -b/2;
\]
The Situation

\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]
Does $q(x)$ increase across $[L,R]$?

$q(x) = x^2 + bx + c$

$x_c = -\frac{b}{2}$

No!
So what is the requirement?

```matlab
\% Determine whether q increases
\% across [L,R]
x_c = -b/2;

if x_c <= L
    fprintf('Yes
')
else
    fprintf('No
')
end
```

Relational Operators

- `<` Less than
- `>` Greater than
- `≤` Less than or equal to
- `≥` Greater than or equal to
- `==` Equal to
- `~=` Not equal to
So what is the requirement?

% Determine whether q increases
% across [L,R]
xc = -b/2;

if ________
 fprintf(‘Yes\n’)
else
 disp(‘No’)
end

disp(‘Yes’)
Problem 2

Write a code fragment that prints “qleft is smaller” if \(q(L) \) is smaller than \(q(R) \). If \(q(R) \) is smaller print “qright is smaller.”
Algorithm v0

Calculate $q(L)$
Calculate $q(R)$
If $q(L) < q(R)$
 print “qleft is smaller”
Otherwise
 print “qright is smaller”
Algorithm v0.1

Calculate x_c

If distance x_{cL} is smaller than distance x_{cR}

print "qleft is smaller"

Otherwise

print "qright is smaller"
Do these two fragments do the same thing?

% given x, y
if x>y
 disp('alpha')
else
 disp('beta')
end

% given x, y
if y>x
 disp('beta')
else
 disp('alpha')
end

A: yes B: no
Algorithm v1

Calculate x_c

If distance x_c^L is smaller than distance x_c^R

print “qleft is smaller”

Otherwise

print “qright is smaller or equals qleft”
Algorithm v2

Calculate x_c

If distance x_cL is same as distance x_cR
 print “qleft and qright are equal”
Otherwise, if x_cL is shorter than x_cR
 print “qleft is smaller”
Otherwise
 print “qright is smaller”
% Which is smaller, q(L) or q(R)?

xc = -b/2; % x at center
if (abs(xc-L) == abs(xc-R))
 disp('qleft and qright are equal')
elseif (abs(xc-L) < abs(xc-R))
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
% Which is smaller, q(L) or q(R)?

qL= L*L + b*L + c; % q(L)
qR= R*R + b*R + c; % q(R)
if (qL == qR)
 disp('qleft and qright are equal')
elseif (qL < qR)
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
% Which is smaller, q(L) or q(R)?

qL = L*L + b*L + c; % q(L)
qR = R*R + b*R + c; % q(R)
if (qL == qR)
 disp('qleft and qright are equal')
 fprintf('q value is %f\n', qL)
elseif (qL < qR)
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

What if you only want to know if \(q(L)\) is close to \(q(R)\)?
% Is q(L) close to q(R)?

\[
tol = 1e-4; \quad \% \text{ tolerance}
\]

\[
q_L = L \cdot L + b \cdot L + c
\]

\[
q_R = R \cdot R + b \cdot R + c
\]

\[
\text{if } (\text{abs}(q_L - q_R) < \text{tol})
\]
\[
\quad \text{disp}('q\text{left and q\text{right similar}')}
\]

end

Name an important parameter and define it with a comment!
Do these two fragments do the same thing?

% given x, y
if x>y
 disp('alpha')
else
 disp('beta')
end

% given x, y
if x>y
 disp('alpha')
end
if y>=x
 disp('beta')
end

A: yes B: no
Simple *if* construct

```plaintext
if  boolean expression
  statements to execute if expression is true
else
  statements to execute if expression is false
end
```
Even simpler **if** construct

if *boolean expression*

statements to execute if expression *is true*

end
The **if** construct

```plaintext
if  boolean expression1
    statements to execute if expression1 is true
elseif  boolean expression2
    statements to execute if expression1 is false
    but expression2 is true
:
else
    statements to execute if all previous conditions are false
end
```

Can have any number of elseif branches but at most one else branch.
Things to know about the *if* construct

- **At most one** branch of statements is executed
- There can be **any number of **elseif** clauses
- There can be **at most one else** clause
- The **else** clause must be the last clause in the construct
- The **else** clause does not have a condition (boolean expression)