Previous Lecture (and lab):
- Variables & assignment
- Built-in functions
- Input & output
- Good programming style (meaningful variable names; use comments)

Today’s Lecture:
- Branching (conditional statements)

Announcements:
- Discussion section this week in Hollister 464 computer lab
- Project 1 (P1) due Thurs., 9/1, at 11 pm
- Pay attention to Academic Integrity
- You can see any TA for help, not just your discussion TA
- Matlab consultants at ACCEL Green Rm (Carpenter Hall 2nd fl. computing facility) 5-10 pm Sunday to Thursday
- Piazza – “Q & A system” for all students in CS1112. Use it for clarification only—do not ask (answer) homework questions and do not give hints on homework. Will be monitored by TAs.
- Please register your clicker using the link on the course website (redirected to Cornell IT)—not through Blackboard
- Remote MATLAB access: newly joined students will have accounts tomorrow

Quick review
- Variable
 - A named memory space to store a value
- Assignment operator: =
 - Let x be a variable that has a value. To give variable y the same value as x, which statement below should you write?
 - x = y or y = x
- Script (program)
 - A sequence of statements saved in an m-file
 - ; (semi-colon)
 - Suppresses printing of the result of assignment statement

So far, all the statements in our scripts are executed in order
- We do not have a way to specify that some statements should be executed only under some condition
- We need a new language construct...

Consider the quadratic function
\(q(x) = x^2 + bx + c \)
on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L) \) or \(q(R) \)?
- What is the minimum value of \(q(x) \) in \([L, R]\)?
Problem 1

Write a code fragment that prints "yes" if \(q(x) \) increases across the interval and "no" if it does not.

\[
q(x) = x^2 + bx + c \\
\bullet x_c = -b/2
\]

% Quadratic \(q(x) = x^2 + bx + c \)
b = input('Enter b: ');
c = input('Enter c: ');
L = input('Enter L: ');
R = input('Enter R: ');

% Determine whether \(q \) increases % across \([L,R]\)
x_c = -b/2;

So what is the requirement?
% Determine whether \(q \) increases % across \([L,R]\)
x_c = -b/2;
if __________
 fprintf('Yes\n')
else
 fprintf('No')
end

Problem 2

Write a code fragment that prints "qleft is smaller" if \(q(L) \) is smaller than \(q(R) \).
If \(q(R) \) is smaller print "qright is smaller."

\[
< < \text{Less than} \text{ Greater than} \\
\geq \text{Less than or equal to} \text{ Greater than or equal to} \\
\div \text{Equal to} \text{ Not equal to}
\]
Algorithm v0
Calculate \(q(L) \)
Calculate \(q(R) \)
If \(q(L) < q(R) \)
 print "qleft is smaller"
Otherwise
 print "qright is smaller"

Algorithm v0.1
Calculate \(x_c \)
If distance \(x_cL \) is smaller than distance \(x_cR \)
 print "qleft is smaller"
Otherwise
 print "qright is smaller"

Do these two fragments do the same thing?

% given \(x, y \)
if \(x > y \)
 disp('alpha')
else
 disp('beta')
end

% given \(x, y \)
if \(y > x \)
 disp('beta')
else
 disp('alpha')
end

A: yes B: no

Consider the quadratic function
\[q(x) = x^2 + bx + c \]
on the interval \([L, R]\):

What if you only want to know if \(q(L) \) is close to \(q(R) \)?

\% Is \(q(L) \) close to \(q(R) \)?
\% given \(x, y \)
\% tolerance
\% tolerance
\n\% given \(x, y \)
\% tolerance
\n\% given \(x, y \)
\% tolerance
\n\% given \(x, y \)
\% tolerance

\n\% given \(x, y \)
\% tolerance
\n\% given \(x, y \)
\% tolerance

Do these two fragments do the same thing?

% given \(x, y \)
if \(x > y \)
 disp('alpha')
else
 disp('beta')
end

% given \(x, y \)
if \(y >= x \)
 disp('alpha')
end

A: yes B: no
Simple if construct

```plaintext
if boolean expression
    statements to execute if expression is true
else
    statements to execute if expression is false
end
```

Even simpler if construct

```plaintext
if boolean expression
    statements to execute if expression is true
end
```

The if construct

```plaintext
if boolean expression1
    statements to execute if expression1 is true
elseif boolean expression2
    statements to execute if expression1 is false but expression2 is true
else
    statements to execute if all previous conditions are false
end
```

Things to know about the if construct

- At most one branch of statements is executed
- There can be ________ elseif clauses
- There can be ________ else clause
- The else clause ________ in the construct
- The else clause ________ (boolean expression)

Consider the quadratic function

```plaintext
q(x) = x^2 + bx + c
```

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?

 Modified Problem 3

Write a code fragment that prints “yes” if \(xc\) is in the interval and “no” if it is not.
So what is the requirement?

% Determine whether xc is in
% [L, R]
xc = -b/2;
if ______________
 disp('Yes')
else
 disp('No')
end

The value of a boolean expression is either true or false.

\[(L<=xc) \&\& (xc<=R)\]

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

\&\& \hspace{0.5cm} || \hspace{0.5cm} ~

Logical operators

\&\& logical and: Are both conditions true?
E.g., we ask "is \(L \leq x_c\) and \(x_c \leq R\) ?"
In our code: \(L<=xc\ \&\&\ xc<=R\)

|| logical or: Is at least one condition true?
E.g., we can ask if \(x_c\) is outside of \([L, R]\),
i.e., "is \(x_c \leq L\) or \(R \leq x_c\) ?"
In code: \(xc<L \hspace{0.1cm} || \hspace{0.1cm} R<xc\)

~ logical not: Negation
E.g., we can ask if \(x_c\) is not outside \([L, R]\).
In code: \(~(xc<L \hspace{0.1cm} || \hspace{0.1cm} R<xc)\)