Previous Lecture (and Discussion):
- Branching (`if, elseif, else, end`)
- Relational operators (`<, >=, ==, ~=, ...` etc.)

Today’s Lecture:
- Logical operators (`&&, ||, ~`) and “short-circuiting”
- More branching—`nesting`
- Top-down design

Announcements:
- **Project 1** (P1) due Thursday at 11pm
- Submit real `.m` files (plain text, not from a word processing software such as Microsoft Word)
- Register your clicker using the link on the course website
The **if** construct

```plaintext
if  boolean expression1
    statements to execute if  expression1  is true
elseif  boolean expression2
    statements to execute if  expression1  is false
    but  expression2  is true
:
else
    statements to execute if all previous conditions are false
end
```

Can have any number of elseif branches but at most one else branch
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
Modified Problem 3

Write a code fragment that prints “yes” if \(xc \) is in the interval and “no” if it is not.
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

No!
So what is the requirement?

% Determine whether xc is in [L,R]
xc = -b/2;

if ________________
 disp('Yes')
else
 disp('No')
end
So what is the requirement?

% Determine whether xc is in
% [L,R]
xc = -b/2;

if L<=xc && xc<=R
 disp('Yes')
else
 disp('No')
end
The value of a boolean expression is either true or false.

\[(L \leq xc) \land (xc \leq R)\]

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

- **and** \(\land\)
- **or** \(\lor\)
- **not** \(\neg\)
Logical operators

&& logical **and**: Are both conditions true?

E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”

In our code: $L \leq x_c$ && $x_c \leq R$
Logical operators

&& logical **and**: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq x_c$ && $x_c \leq R$

|| logical **or**: Is at least one condition true?
E.g., we can ask if x_c is outside of $[L,R]$,
i.e., “is $x_c < L$ or $R < x_c$?”
In code: $x_c < L$ || $R < x_c$
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq x_c$ && $x_c \leq R$

|| logical or: Is at least one condition true?
E.g., we can ask if x_c is outside of $[L,R]$, i.e., “is $x_c < L$ or $R < x_c$?”
In code: $xc<L$ || $R<xc$

~ logical not: Negation
E.g., we can ask if x_c is not outside $[L,R]$.
In code: ~(xc<L || R<xc)
The logical AND operator: \&\&

\begin{tabular}{ll}
F & F \\
F & T \\
T & F \\
T & T \\
\end{tabular}
The logical AND operator: `&&`

```
F   F   F
F   T   F
T   F   F
T   T   T
```
The logical OR operator: \(\lor \)

\[
\begin{array}{c|c|c|c}
F & F & F & F \\
F & T & T & T \\
T & F & F & F \\
T & T & T & T \\
\end{array}
\]
The logical OR operator: \(\lor \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(\lor)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>
The logical NOT operator: \(~\)

\[\begin{array}{c}
F \\
T \\
\end{array} \]
The logical NOT operator: \sim

<table>
<thead>
<tr>
<th>\sim</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
“Truth table”

Let X, Y represent boolean expressions.

E.g., $d > 3.14$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$X && Y$</th>
<th>$X | Y$</th>
<th>$\sim Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“and” “or” “not”
“Truth table”

X, Y represent boolean expressions. E.g., \(d > 3.14 \)

| X | Y | X && Y | X || Y | ~Y |
|---|---|--------|-------|----|
| F | F | F | F | T |
| F | T | F | T | F |
| T | F | F | T | T |
| T | T | T | T | F |

“Truth table”

Matlab uses 0 to represent false, 1 to represent true

| X | Y | X && Y | X || Y | ~Y |
|---|---|-------|------|----|
| | | “and” | “or” | “not” |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |
Logical operators “short-circuit”

A `&&` expression short-circuits to false if the left operand evaluates to `false`.

A `||` expression short-circuits to _________________ if __

Entire expression is false since the first part is false
Logical operators “short-circuit”

A \&\& expression short-circuits to false if the left operand evaluates to \textit{false}.

A \texttt{||} expression short-circuits to \textit{true} if the left operand evaluates to \textit{true}.

Entire expression is false since the first part is false
Always use logical operators to connect simple boolean expressions

Why is it wrong to use the expression
\[L \leq xc \leq R \]
for checking if \(xc \) is in \([L,R]\)?

Example: Suppose \(L \) is 5, \(R \) is 8, and \(xc \) is 10. We know that 10 is not in \([5,8]\), but the expression \(L \leq xc \leq R \) gives…
Variables a, b, and c have whole number values. \textbf{True} or \textbf{false}: This fragment prints “Yes” if there is a \textit{right triangle} with side lengths a, b, and c and prints “No” otherwise.

if $a^2 + b^2 == c^2$
 disp(‘Yes’)
else
 disp(‘No’)
end

A: true
B: false
a = 5;
b = 3;
c = 4;
if (a^2+b^2==c^2)
 disp('Yes')
else
 disp('No')
end

This fragment prints "No" even though we have a right triangle!
a = 5;
b = 3;
c = 4;
if ((a^2+b^2==c^2) || (a^2+c^2==b^2) || (b^2+c^2==a^2))
 disp('Yes')
else
 disp('No')
end
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\) ?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

min at R
Conclusion

If x_c is between L and R

Then min is at x_c

Otherwise

Min value is at one of the endpoints
Start with pseudocode

If xc is between L and R

Min is at xc

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, min at xc, or min at an endpoint
Set up structure first: if-else, condition

if \(L \leq xc \) && \(xc \leq R \)

Then min is at \(xc \)

else

Min is at one of the endpoints

end

Now refine our solution-in-progress. I'll choose to work on the if-branch next
Refinement: filled in detail for task “min at xc”

\[
\text{if } L \leq xc \text{ and } xc \leq R \\
\quad \text{\% min is at xc} \\
\qquad q\text{Min} = xc^2 + b*xc + c;
\]

\[
\text{else} \\
\quad \text{Min is at one of the endpoints}
\]

end

Continue with refining the solution... else-branch next
Refinement: detail for task “min at an endpoint”

```matlab
if L<=xc && xc<=R
    \% min is at xc
    qMin= xc^2 + b*xc + c;
else
    \% min is at one of the endpoints
    if \% xc left of bracket
        \% min is at L
    else \% xc right of bracket
        \% min is at R
    end
end
```

Continue with the refinement, i.e., replace comments with code
Refinement: detail for task “min at an endpoint”

```matlab
if  L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if  xc < L
        qMin= L^2 + b*L + c;
    else
        qMin= R^2 + b*R + c;
    end
end
```
Final solution (given b,c,L,R,xc)

\[
\text{if } L \leq xc \text{ } \&\text{ } xc \leq R \\
\text{ % min is at } xc \\
qMin = xc^2 + b*xc + c; \\
\text{else} \\
\text{ % min is at one of the endpoints} \\
\text{if } xc < L \\
qMin = L^2 + b*L + c; \\
\text{else} \\
qMin = R^2 + b*R + c; \\
\text{end} \\
\text{end}
\]

See quadMin.m
quadMinGraph.m

An if-statement can appear within a branch—just like any other kind of statement!
Notice that there are 3 alternatives → can use elseif!

```plaintext
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2+b*xc+c;
else
    % min at one endpt
    if xc < L
        qMin= L^2+b*L+c;
    else
        qMin= R^2+b*R+c;
    end
end
```
Top-Down Design

State problem

Define inputs & outputs

Design algorithm

Convert algorithm to program

Test and debug

Decomposition

Stepwise refinement

An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.
Does this program work?

```python
score = input('Enter score: ');
if score > 55
    disp('D')
elseif score > 65
    disp('C')
elseif score > 80
    disp('B')
elseif score > 93
    disp('A')
else
    disp('Not good…')
end
```

A: yes
B: no