Previous Lecture:
- Nesting if-statements
- Logical operators short-circuit
- Top-down design

Today’s Lecture:
- Iteration using for
- Watch MatTV episode “Troubleshooting for-loops”

Announcements:
- Discussion this week in the classrooms as listed in Student Center
- CS1112 “Partner Search Mixer” on Thursday, 9/8, 5:30-6:30pm, Gates Hall atrium in front of G01, sponsored by WICC, ACSU, URMC, and the CS Dept
- Last call to register your clickers—use the link on the course website
A stick of unit length is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

Physical experiment?
Thought experiment? → analysis
Computational experiment! → simulation

Need to repeat many trials!
A stick of unit length is split into two pieces. The breakpoint is randomly selected. On average, how long is the shorter piece?

A: .000001
B: .25
C: .333333
D: .499999
E: none of the above
Simulation:
use code to imitate the physical experiment

\[
\begin{align*}
\% \text{ one trial of the experiment} \\
\text{breakPt} &= \text{ rand} ; \\
\text{if } \text{ breakPt}<0.5 \\
\quad \text{ shortPiece} &= \text{ breakPt} ; \\
\text{else} \\
\quad \text{ shortPiece} &= 1-\text{breakPt} ; \\
\text{end}
\end{align*}
\]
% one trial of the experiment
breakPt= rand;
shortPiece= min(breakPt, 1-breakPt);

Want to do many trials, add up the lengths of the short pieces, and then divide by the number of trials to get the average length.
Repeat n times

\begin{verbatim}
% one trial of the experiment
breakPt = rand;
shortPiece = min(breakPt, 1-breakPt);
\end{verbatim}

Take average

Print result
n = 10000; % number of trials
total = 0; % accumulated length so far

for k = 1:n
 % one trial of the experiment
 breakPt = rand;
 shortPiece = min(breakPt, 1-breakPt);
 total = total + shortPiece;
end

aveLength = total/n;
fprintf('Average length is %f
', aveLength)
Example: “Accumulate” a solution

% Average 10 numbers from user input

n= 10; % number of data values

for k= 1:n
 % read and process input value
 num= input('Enter a number: '); total= total + num;
end
ave= total/n; % average of n numbers
fprintf('Average is %f\n', ave)

How many passes through the loop will be completed?

A: 0
B: 1
C: 9
D: 10
E: 11
Remember to initialize

% Average 10 numbers from user input

n = 10; % number of data values
total = 0; % current sum (initialized to zero)
for k = 1:n
 % read and process input value
 num = input('Enter a number: ');
 total = total + num;
end
ave = total/n; % average of n numbers
fprintf('Average is %f\n', ave)
Important Features of Iteration

- A task can be accomplished if some steps are repeated; these steps form the loop body
- Need a starting point
- Need to know when to stop
- Need to keep track of (and measure) progress—update
Example: “Accumulate” a solution

% Average 10 numbers from user input

n = 10; % number of data values
total = 0; % current sum (initialized to zero)
for k = 1:1:n
 % read and process input value
 num = input('Enter a number: ');
 total = total + num;
end
ave = total/n; % average of n numbers
fprintf('Average is %f\n', ave)
Monte Carlo Approximation of π

- Throw N darts
- Sq. area = $N = L \times L$
- Circle area = $N_{in} = \pi L^2 / 4$
Monte Carlo Approximation of π

Throw N darts

Sq. area $= N = L \times L$

Circle area $= N_{in} = \pi L^2 / 4$

$\pi = 4 N_{in} / N$
Monte Carlo Approximation of π

For each of N trials
 Throw a dart
 If it lands in circle
 add 1 to total # of hits

π is $4 \times \text{hits}/N$
Monte Carlo π with N darts on L-by-L board

\begin{verbatim}
N=___;
for k = 1:N
end
myPi = 4*hits/N;
\end{verbatim}
Monte Carlo π with N darts on L-by-L board

$$N = __;$$
\begin{verbatim}
for k = 1:N
 \% Throw kth dart
 \% Count it if it is in the circle
end

myPi = 4*hits/N;
\end{verbatim}
Monte Carlo \(\pi \) with \(N \) darts on \(L \)-by-\(L \) board

\[\text{N=___;} \]
\[\text{for k = 1:N} \]
\[\quad \text{% Throw kth dart} \]
\[\quad x = \text{rand*}L - L/2; \]
\[\quad y = \text{rand*}L - L/2; \]
\[\quad \text{% Count it if it is in the circle} \]
\[\quad \text{if sqrt(x^2+y^2) <= L/2} \]
\[\quad \quad \text{hits = hits + 1;} \]
\[\quad \text{end} \]
\[\text{end} \]
\[\text{myPi = 4*hits/N;} \]
Monte Carlo π with N darts on L-by-L board

\[N=_; \quad L=_; \quad \text{hits}=0; \]

\begin{verbatim}
for k = 1:N
 x = rand*L - L/2;
 y = rand*L - L/2;
 if sqrt(x^2+y^2) <= L/2
 hits = hits + 1;
 end
end
myPi = 4*hits/N;
\end{verbatim}
Syntax of the \texttt{for} loop

\begin{center}
\begin{tabular}{|l|}
\hline
\texttt{for} <\texttt{var}>= <\texttt{start value}>::<\texttt{incr}>::<\texttt{end bound}> \\
\multicolumn{1}{|c|}{\textit{statements to be executed repeatedly}} \\
end \\
\hline
\end{tabular}
\end{center}

Loop header specifies all the values that the index variable will take on, one for each pass of the loop.
E.g, \texttt{k= 3:1:7} means \texttt{k} will take on the values 3, 4, 5, 6, 7, one at a time.
Pattern for doing something n times

\[n = _____ \]

\[\text{for } k = 1:n \]

\% code to do

\% that something

end

Definite iteration
for loop examples

for k = 2:0.5:3
 disp(k)
end

k takes on the values __________
Non-integer increment is OK

for k = 1:4
 disp(k)
end

k takes on the values __________
Default increment is 1

for k = 0:-2:-6
 disp(k)
end

k takes on the values __________
"Increment" may be negative

for k = 0:-2:-7
 disp(k)
end

k takes on the values __________
Colon expression specifies bounds

for k = 5:2:1
 disp(k)
end
for loop examples

for k = 2:0.5:3
 disp(k)
end

k takes on the values 2, 2.5, 3
Non-integer increment is OK

for k = 1:4
 disp(k)
end

k takes on the values 1, 2, 3, 4
Default increment is 1

for k = 0:-2:-6
 disp(k)
end

“Increment” may be negative

for k = 0:-2:-7
 disp(k)
end

Colon expression specifies bounds

for k = 5:2:1
 disp(k)
end

The set of values for k is the empty set: the loop body won’t execute