Some old exam questions

1. A Pascal’s triangle with levels 0 to 4 is shown below. Level 0 has a single value, and each value on subsequent levels is the sum of the two entries diagonally above in the previous level of the triangle. For example, the value 6 in level 4 is the sum of the values 3 and 3 in level 3.

 1
 1 1 level 0
 1 2 1 level 1
 1 3 3 1 level 2
 1 4 6 4 1 level 3
 1 5 10 10 5 1 level 4

Complete function `pascalVector` below to return the row vector corresponding to a specified level of Pascal’s triangle. For example, if level `lev` is 4, then the returned vector must be `[1, 4, 6, 4, 1]`. Assume that `lev` is a non-negative integer. The only Matlab built-in functions allowed are `zeros`, `ones`, and `length`. Do not use the formula for binomial coefficients to solve this problem. Use a loop (or loops): the vector for each level is based on the vector from the previous level.

   ```matlab
   function p = pascalVector(lev)
   % p is the vector corresponding to level lev of Pascal's triangle
   ```

2. Complete the following function.

   ```matlab
   function MyHistogram(v)
   % Draw a histogram for the data in v using asterisks in the COMMAND WINDOW (not figure window).
   % v is a vector of non-negative values.
   % The histogram is scaled so that the largest data value is represented by
   % ten asterisks. Round as necessary in order to draw whole asterisks.
   % Example: v = [12 4 0.5 9 2 20]
   % Output in Command Window:
   % *****
   % **
   % 
   % ****
   % **********
   ```

3. (a) Implement function `isIn` as specified. The only built-in function that you may use is `length`.

   ```matlab
   function alfa = isIn(x, v)
   % alfa is 1 if value x is in vector v. Otherwise alfa is 0.
   % x is an integer. v is a vector of integers, possibly of length 0.
   % If v has length 0 (v is the empty vector), then alfa is 0.
   ```

 (b) Let a and b be non-empty vectors of integers. We define the intersection set of a and b to be the distinct values that appear in both vectors a and b. For example, if

   ```matlab
   a = [4 2 5 3 8 6]
   b = [3 5 1 6 4 5 0 7]
   ```

 then the intersection set of a and b is the vector `[4 5 3 6]` (the order of the values in the vector does not matter). Implement function `intersectionSet` as specified, making effective use of function `isIn`. The only built-in function that you may use is `length`.

   ```matlab
   function s = intersectionSet(a,b)
   % a and b are vectors of integers. a and b are not empty.
   % Vector s contains only the values that are in both vectors a and b.
   % Vector s contains distinct values. s may be empty.
   ```
4. Implement function **partialStrings** as specified. *Do not use vectorized code.*

```matlab
function M = partialStrings(CA, t)
    % CA is a length n cell array of strings.
    % t is a positive integer.
    % M is an n-by-t matrix of characters:
    % Row r of M contains the first t characters of the rth string in CA.
    % If the rth string in CA is shorter than t, pad the string with '!!'.
    % NO VECTORIZED CODE

    % For example, let cell array CA hold these five strings:
    CA = {'d' 'a2c' '#_!.a' '' 'ap'};

    % Then the function call M = partialStrings(CA,3) should return a matrix M like this:
    M = ['d!!' ; 'a2c' ; '# _!' ; '!!!' ; 'ap!'];

    % 5. (a) Implement this function:

    function z = overlap(diskA, diskB)
        % z is 1 (true) if diskA and diskB overlap; otherwise z is 0 (false).
        % diskA and diskB are each a disk structure with the following fields:
        % x: x-coordinate of center of disk
        % y: y-coordinate of center of disk
        % radius: radius of disk

(b) Implement the following function to return the indices of disk triplets that overlap. Three disks form a triplet if every disk overlaps with each of the other two. Make effective use of function **overlap** from part (a). Your code should be efficient—avoid unnecessary iterations.

```