CS1112 Discussion Exercise 5

Do not use arrays.

1. Write a function \(y = \text{Mid3}(a,b,c) \) that returns the middle of the three values \(a \), \(b \), and \(c \). Do not use built-in functions \texttt{max} and \texttt{min}.

2. Complete the following function so that it performs as specified

   ```matlab
   function [s,c] = Trig(a)
   \%
   s and c are the sine and cosine of angle a.
   \%
   a is the measure of an angle in degrees (assumed positive).
   ```

 Write a script that uses \texttt{Trig} to produce a table of sine and cosine values for \(0^\circ, 1^\circ, \ldots, 90^\circ \).

3. Complete the following function so that it performs as specified:

   ```matlab
   function x = IsPythag(a,b,c)
   \%
   x has the value of 1 if a triangle with sides a, b, and c is
   \%
   a Pythagorean triangle and 0 otherwise.
   \%
   a, b, and c are positive integers.
   ```

4. The following function produces a pretty good estimate of \(\sin(x) \) if \(|x| \leq 2\pi \):

   ```matlab
   function y = MySin0(x)
   \%
   y is an approximation of \( \sin(x) \).
   y = x;
   for k= 1:8
       y = y + (-1)^k *x^(1+2*k) /factorial(1+2*k);
   end
   ```

 It is horrible if \(|x| \) is large. Using the fact that the sine function is periodic, write a function \texttt{MySin1(x)} that produces a good sine approximation for any \(x \). Make effective use of \texttt{MySin0}.

5. Consider the binomial coefficient

 \[
 \binom{n}{k} = \frac{n!}{k!(n-k)!}
 \]

 We will call this value “n-choose-k”. Complete the following function so that it performs as specified:

   ```matlab
   function d = digitsOfBinCoef(n,k)
   \%
   d is the number of digits required to write the binomial coefficient
   \%
   n-choose-k
   ```

 Recall that if \(x \) houses a positive integer, then the value of \texttt{floor(log10(x))+1} is the number of base-10 digits that are required to write the value of \(x \). Make use of built-in function \texttt{factorial}.

6. Last week, you did an exercise to produce ten lines of output where the \(n \)th line displays the number of digits required to write down each of the binomial coefficients

 \[
 \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n}
 \]

 Write a script \texttt{showDigitsOfBinCoefs} to solve this problem again, but now make use of function \texttt{digitsOfBinCoef} from above.