Previous Lecture:
- Discrete vs. continuous; finite vs. infinite
- Vectorized operations

Today’s Lecture:
- 2-d array—matrix

Announcements:
- Discussion this week in the classrooms as listed in the roster
- Prelim 1 tonight at 7:30pm
 - Last names A-G: Ives Hall 105
 - Last names H-K: Ives Hall 217
 - Last names L-Z: Ives Hall 305

Initialize arrays if dimensions are known
... instead of “building” the array one component at a time

```matlab
% Initialize y
x=linspace(a,b,n);
y=zeros(1,n);
for k=1:n
    y(k)=myF(x(k));
end
```

```matlab
% Build y on the fly
x=linspace(a,b,n);
y(k)=myF(x(k));
end
```

Much faster for large n!

Vectorized code
--- a Matlab-specific feature

- Code that performs element-by-element arithmetic/relation/logical operations on array operands in one step

- Scalar operation: $x + y$
 - where x, y are scalar variables

- Vectorized code: $x + y$
 - where x and/or y are vectors. If x and y are both vectors, they must be of the same shape and length

Vectorized addition

```
\[
x \begin{bmatrix} 2 & 1.5 & 8 \end{bmatrix} \\
+ \begin{bmatrix} 1 & 2 & 0 & 1 \end{bmatrix}
\]
```

```
\[
= \begin{bmatrix} 3 & 3.5 & 9 \end{bmatrix}
```

Matlab code: $z = x + y$

Vectorized multiplication

```
\[
a \begin{bmatrix} 2 & 1.5 & 8 \end{bmatrix} \\
\times \begin{bmatrix} 1 & 2 & 0 & 1 \end{bmatrix}
\]
```

```
\[
= \begin{bmatrix} 2 & 2 & 0 & 8 \end{bmatrix}
```

Matlab code: $c = a \times b$

Vectorized element-by-element arithmetic operations on arrays

See full list of ops in §4.1

A dot (.) is necessary in front of these math operators
Shift

\[
\begin{array}{c}
\times 3 \\
+ 2 1 .5 8 \\
= 5 4 3.5 11 \\
\end{array}
\]

Matlab code: \(z = x + y \)

Reciprocate

\[
\begin{array}{c}
\times 1 \\
/ 2 1 .5 8 \\
= .5 1 2 .125 \\
\end{array}
\]

Matlab code: \(z = x ./ y \)

Vectorized

Element-by-element arithmetic operations between an array and a scalar

\[
\begin{array}{c}
+ \\
- \\
\times \\
/ \\
\end{array}
\]

A dot (.) is necessary in front of these math operators

The dot in \(+ \), \(\times \), \(\div \) not necessary but OK

Can we plot this?

\[
f(x) = \frac{\sin(5x) \exp(-x/2)}{1 + x^2} \quad \text{for} \ -2 \leq x \leq 3
\]

Yes!

\[
x = \text{linspace}(-2,3,200); \\
y = \sin(5*x) .* \exp(-x/2) ./ (1 + x.^2); \\
\text{plot}(x,y)
\]

Element-by-element arithmetic operations on arrays...

Also called “vectorized code”

\[
x = \text{linspace}(-2,3,200); \quad \text{\(x \) and \(y \) are vectors} \\
y = \sin(5*x) .* \exp(-x/2) ./ (1 + x.^2); \quad \text{Contrast with scalar operations that we’ve used previously…}
\]

\[
a = 2.1; \quad \text{\(a \) and \(b \) are scalars} \\
b = \sin(5*a); \\
The operators are (mostly) the same; the operands may be scalars or vectors. \\
When an operand is a vector, you have “vectorized code.”
\]

Storing and using data in tables

A company has 3 factories that make 5 products with these costs:

\[
\begin{array}{cccccc}
C & 10 & 36 & 22 & 15 & 62 \\
12 & 35 & 20 & 12 & 66 \\
13 & 37 & 21 & 16 & 59 \\
\end{array}
\]

What is the best way to fill a given purchase order?
2-d array: matrix

- An array is a named collection of like data organized into rows and columns
- A 2-d array is a table, called a matrix
- Two indices identify the position of a value in a matrix, e.g., mat(r,c)
 refers to component in row r, column c of matrix mat
- Array index starts at 1
- Rectangular: all rows have the same # of columns

Creating a matrix

- Built-in functions: ones, zeros, rand
 - E.g., zeros(2,3) gives a 2-by-3 matrix of 0s
 - E.g., zeros(2) gives a 2-by-2 matrix of 0s
- “Build” a matrix using square brackets, [], but the dimension must match up:
 - [x y] puts y to the right of x
 - [x; y] puts y below x
 - [4 0 3; 5 1 9] creates the matrix
 - [4 0 3; ones(1,3)] gives
 - [4 0 3; ones(3,1)] doesn’t work

Working with a matrix:

- size and individual components

 Given a matrix M
 \[
 \begin{array}{cccc}
 2 & -1 & 5 & 0 \\
 3 & 8 & 6 & 7 \\
 5 & -3 & 8.5 & 9 \\
 52 & 81 & .5 & 7 \\
 \end{array}
 \]

 \[
 [nr, nc]= size(M) \quad \% \; nr \; is \; # \; of \; rows,
 \% \; nc \; is \; # \; of \; columns
 \]

 nr = size(M, 1) \quad \% \; # \; of \; rows

 nc = size(M, 2) \quad \% \; # \; of \; columns

 M(2,4) = 1;
 disp(M(3,1))
 M(1,nc) = 4;

Example: minimum value in a matrix

function val = minInMatrix(M)
 \%
 \% val is the smallest value in matrix M

Pattern for traversing a matrix M

% Given an nr-by-nc matrix M.
% What is A?
for r = 1: nr
 for c = 1 : nc
 A(c,r) = M(r,c);
 end
end

A A is M with the columns in reverse order
B A is M with the rows in reverse order
C A is the transpose of M
D A and M are the same
% Given an nr-by-nc matrix M.
% What is A?
for r= 1: nr
 for c= 1: nc
 A(c,r)= M(r,c);
 end
end

function A = RandomLinks(n)
% A is n-by-n matrix of 1s and 0s
% representing n webpages
A = zeros(n,n);
for i=1:n
 for j=1:n
 r = rand(1);
 if i~=j && r<= 1/(1 + abs(i-j));
 A(i,j) = 1;
 end
 end
end

Matrix example: Random Web

- N web pages can be represented by an N-by-N Link Array A.
- A(i,j) is 1 if there is a link on webpage j to webpage i.
- Generate a random link array and display the connectivity:
 - There is no link from a page to itself
 - If i≠j then A(i,j) = 1 with probability \(\frac{1}{1+|i-j|} \)
 - There is more likely to be a link if i is close to j

Represent the web pages graphically...

100 Web pages arranged in a circle.
Next display the links....
% Given an n-by-m matrix A.
% What is this operation?
for g = 1:n
 for h = 1:floor(m/2)
 A(g,h) = A(g, m-h+1);
 end
end

A. Reflect the right half of A onto the left half
B. Reflect the bottom half of A onto the top half