Announcements:

- Project 1 (P1) due Thurs, 1/11, at 11pm
- Pay attention to Academic Integrity
- You can see any TA for help, not just your discussion TA
- Matlab consultants at ACCEL Green Rm (Carpenter Hall 2nd fl. computing facility) 5-10pm Sunday to Thursday
- Just added CS1112? Tell your discussion TA to add you in CS1112 CMS (and tell CS1110 to drop your from their CMS)
- Piazza – “Q & A system” for all students in CS1112. Use it for clarification only—do not ask (answer) homework questions and do not give hints on homework. Will be monitored by TAs. Available later today.
- Please register your clicker using the link on the course website—not through Blackboard
- Remote MATLAB access: See CMS for your assigned servers
- Previous Lecture (and lab):
 - Variables & assignment
 - Built-in functions
 - Input & output
 - Good programming style (meaningful variable names; use comments)

- Today’s Lecture:
 - Branching (conditional statements)
Quick review

- Variable
 - A named memory space to store a value

- Assignment operator: =
 - Let x be a variable that has a value. To give variable y the same value as x, which statement below should you write?

 \[x = y \quad \text{or} \quad y = x \]

- Script (program)
 - A sequence of statements saved in an m-file

- ; (semi-colon)
 - Suppresses printing of the result of assignment statement
- So far, all the statements in our scripts are executed in order.
- We do not have a way to specify that some statements should be executed only under some condition.
- We need a new language construct…
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
What are the critical points?
What are the critical points?

- End points: $x = L, x = R$
- $\{ x \mid q'(x) = 0 \}$
What are the critical points?

- End points: \(x = L, x = R \)
- \(\{ x \mid q'(x) = 0 \} \)

\[
q(x) = x^2 + bx + c \\
q'(x) = 2x + b \\
q'(x_c) = 0 \implies x_c = -\frac{b}{2}
\]
Problem 1

Write a code fragment that prints “yes” if $q(x)$ increases across the interval and “no” if it does not.
% Quadratic \(q(x) = x^2 + bx + c \)

\[
\begin{align*}
 b & = \text{input('Enter } b: ');} \\
 c & = \text{input('Enter } c: ');} \\
 L & = \text{input('Enter } L: ');} \\
 R & = \text{input('Enter } R: ');} \\
\end{align*}
\]

% Determine whether \(q \) increases
% across \([L,R]\)

\[
xc = -b/2;
\]
The Situation

\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]
Does $q(x)$ increase across $[L,R]$?

$$q(x) = x^2 + bx + c$$

$$x_c = -\frac{b}{2}$$

No!
So what is the requirement?

% Determine whether q increases
% across [L,R]
xc = -b/2;

if ______________________
 fprintf('Yes\n')
else
 fprintf('No\n')
end
So what is the requirement?

% Determine whether q increases
% across [L,R]
xc = -b/2;

if xc <= L
 fprintf(‘Yes\n’) % Relational Operators
else
 fprintf(‘No\n’) % < Less than
end

% Greater than
% <= Less than or equal to
% >= Greater than or equal to
% == Equal to
% ~= Not equal to
So what is the requirement?

% Determine whether q increases
% across [L,R]
xc = -b/2;

if __________
 fprintf('Yes\n')
else
 disp('No')
end
Problem 2

Write a code fragment that prints “qleft is smaller” if q(L) is smaller than q(R). If q(R) is smaller print “qright is smaller.”
Algorithm v0

Calculate $q(L)$
Calculate $q(R)$

If $q(L) < q(R)$
 print "qleft is smaller"

Otherwise
 print "qright is smaller"
Algorithm v0.1

Calculate x_c
If distance x_cL is smaller than distance x_cR
 print “qleft is smaller”
Otherwise
 print “qright is smaller”
Do these two fragments do the same thing?

% given x, y
if \(x>y \)
 disp(‘alpha’)
else
 disp(‘beta’)
end

% given x, y
if \(y>x \)
 disp(‘beta’)
else
 disp(‘alpha’)
end

A: yes B: no
Algorithm v1

Calculate \(x_c \)
If distance \(x_cL \) is smaller than distance \(x_cR \)
print “qleft is smaller”
Otherwise
print “qright is smaller or equals qleft”
Calculate x_c
If distance x_cL is same as distance x_cR
 print “qleft and qright are equal”
Otherwise, if x_cL is shorter than x_cR
 print “qleft is smaller”
Otherwise
 print “qright is smaller”
% Which is smaller, q(L) or q(R)?

xc = -b/2; % x at center
if (abs(xc-L) == abs(xc-R))
 disp('qleft and qright are equal')
elseif (abs(xc-L) < abs(xc-R))
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
\% Which is smaller, q(L) or q(R)?

\begin{verbatim}
qL = L*L + b*L + c; \% q(L)
qR = R*R + b*R + c; \% q(R)
if (qL == qR)
 disp('qleft and qright are equal')
elseif (qL < qR)
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
\end{verbatim}
% Which is smaller, q(L) or q(R)?

qL = L*L + b*L + c; % q(L)
qR = R*R + b*R + c; % q(R)
if (qL == qR)
 disp('qleft and qright are equal')
 fprintf('q value is %f\n', qL)
elseif (qL < qR)
 disp('qleft is smaller')
else
 disp('qright is smaller')
end
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

What if you only want to know if \(q(L)\) is close to \(q(R)\)?
% Is $q(L)$ close to $q(R)$?

tol = 1e-4; % tolerance
qL = L*L + b*L + c
qR = R*R + b*R + c
if (abs(qL-qR) < tol)
 disp('qleft and qright similar')
end

Name an important parameter and define it with a comment!
Do these two fragments do the same thing?

% given x, y
if x>y
 disp('alpha')
else
 disp('beta')
end

% given x, y
if x>y
 disp('alpha')
endif y>=x
 disp('beta')
end

A: yes B: no
Simple **if** construct

```plaintext
if boolean expression

statements to execute if expression is true

else

statements to execute if expression is false

end
```
Even simpler \textbf{if} construct

\textbf{if} \hspace{3em} \textit{boolean expression}

\hspace{4em} \textit{statements to execute if} \hspace{1em} \textit{expression} \hspace{1em} \textit{is true}

\textbf{end}
The **if** construct

```plaintext
if  boolean expression1
    statements to execute if  expression1  is true
elseif  boolean expression2
    statements to execute if  expression1  is false
    but  expression2  is true
:  
else
    statements to execute if  all previous conditions are false
end
```

Can have any number of elseif branches but at most one else branch
Things to know about the `if` construct

- At most one branch of statements is executed.
- There can be any number of `elseif` clauses.
- There can be at most one `else` clause.
- The `else` clause must be the last clause in the construct.
- The `else` clause does not have a condition (boolean expression).
Things to know about the **if** construct

- **At most one** branch of statements is executed
- There can be any number of **elseif** clauses
- There can be at most one **else** clause
- The **else** clause must be the last clause in the construct
- The **else** clause does not have a condition (boolean expression)