Previous Lecture (and Discussion):
- Branching (*if, elseif, else, end*)
- Relational operators (<, >=, ==, ~=, …, etc.)

Today’s Lecture:
- Logical operators (**&**, **| |**, **~**) and “short-circuiting”
- More branching—*nesting*
- Top-down design

Announcements:
- Discussion this week in computer lab (Upson B7, Phillips 318)
- **Project 1 (P1)** due Thursday at 11pm
- Submit real .m files (plain text, not from a word processing software such as Microsoft Word)
- Register your clicker using the link on the course website?
- Piazza is for general clarification only. Do not ask or answer the question “*how do I solve problem x in the project?”*! Ask that kind of question in person during office/consulting hours!
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
Minimum is at L, R, or xc

$q(x) = x^2 + bx + c$

$x_c = -b / 2$
Modified Problem 3

Write a code fragment that prints “yes” if xc is in the interval and “no” if it is not.
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

No!
So what is the requirement?

% Determine whether xc is in
% [L,R]
xc = -b/2;

if ________________
 disp(‘Yes’)
else
 disp(‘No’)
end
So what is the requirement?

% Determine whether xc is in [L,R]
xc = -b/2;

if L<=xc && xc<=R
 disp('Yes')
else
 disp('No')
end
The value of a boolean expression is either true or false.

\[(L \leq xc) \land (xc \leq R)\]

This (compound) boolean expression is made up of two (simple) boolean expressions. Each has a value that is either true or false.

Connect boolean expressions by boolean operators:

\[\text{and} \quad \text{or} \quad \text{not}\]

\[\&\& \quad || \quad \sim\]
Logical operators

&& logical and: Are both conditions true?
E.g., we ask “is \(L \leq x_c \) and \(x_c \leq R \)?”
In our code: \(L \leq x_c \) && \(x_c \leq R \)
Logical operators

&& logical **and**: Are both conditions true?

E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”

In our code: `L<=xc && xc<=R`

|| logical **or**: Is at least one condition true?

E.g., we can ask if x_c is outside of $[L,R]$, i.e., “is $x_c < L$ or $R < x_c$?”

In code: `xc<L || R<xc`
Logical operators

&& logical **and**: Are both conditions true?
E.g., we ask “is $L \leq x_c$ and $x_c \leq R$?”
In our code: $L \leq x_c$ && $x_c \leq R$

|| logical **or**: Is at least one condition true?
E.g., we can ask if x_c is outside of $[L,R]$, i.e., “is $x_c < L$ or $R < x_c$?”
In code: $x_c < L$ || $R < x_c$

~ logical **not**: Negation
E.g., we can ask if x_c is not outside $[L,R]$. In code: ~($x_c < L$ || $R < x_c$)
The logical AND operator: \&\&

\[\begin{array}{cccc}
F & F & F & F \\
F & T & & T \\
T & F & & T \\
T & T & & T \\
\end{array}\]
The logical AND operator: `&&`

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>&&</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>
The logical OR operator: \(\lor \)

\[
\begin{array}{ccc}
F & F & T \\
F & T & T \\
T & F & T \\
T & T & T \\
\end{array}
\]
The logical OR operator: $||$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The logical NOT operator: \(\sim \)
The logical NOT operator: \(\sim \)

\[
\begin{array}{c|c|c}
\text{F} & \sim & \text{T} \\
\text{T} & \sim & \text{F} \\
\end{array}
\]
“Truth table”

X, Y represent boolean expressions.
E.g., d > 3.14

| X | Y | X && Y | X || Y | ~Y |
|---|---|--------|--------|----|
| F | F | F | F | T |
| F | T | F | T | F |
| T | F | F | T | T |
| T | T | T | T | F |
"Truth table"

Matlab uses 0 to represent false, 1 to represent true

| X | Y | X && Y | X || Y | ~Y |
|---|---|--------|-------|----|
| | | "and" | "or" | "not" |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |
Logical operators “short-circuit”

A `&&` expression short-circuits to false if the left operand evaluates to `false`.

A `||` expression short-circuits to ____________________ if
__

Entire expression is false since the first part is false.
Logical operators “short-circuit”

\[a > b \quad \&\& \quad c > d \]

Entire expression is false since the first part is false

\[a > b \quad \&\& \quad c > d \]

A \(\&\& \) expression short-circuits to false if the left operand evaluates to \textit{false}.

A \(\| \) expression short-circuits to \textit{true} if the left operand evaluates to \textit{true}.

Always use logical operators to connect simple boolean expressions

Why is it wrong to use the expression

\[L \leq xc \leq R \]

for checking if \(xc \) is in \([L,R]\)?

Example: Suppose \(L \) is 5, \(R \) is 8, and \(xc \) is 10. We know that 10 is not in \([5,8]\), but the expression \(L \leq xc \leq R \) gives…
Variables a, b, and c have whole number values. **True or false:** This fragment prints “Yes” if there is a *right triangle* with side lengths a, b, and c and prints “No” otherwise.

```matlab
if a^2 + b^2 == c^2
    disp('Yes')
else
    disp('No')
end
```

A: true

B: false
a = 5;
b = 3;
c = 4;
if (a^2+b^2==c^2)
 disp('Yes')
else
 disp('No')
end

This fragment prints “No” even though we have a right triangle!
a = 5;
b = 3;
c = 4;
if ((a^2+b^2==c^2) || (a^2+c^2==b^2) || (b^2+c^2==a^2))
 disp('Yes')
else
 disp('No')
end
Consider the quadratic function

\[q(x) = x^2 + bx + c \]

on the interval \([L, R]\):

- Is the function strictly increasing in \([L, R]\)?
- Which is smaller, \(q(L)\) or \(q(R)\)?
- What is the minimum value of \(q(x)\) in \([L, R]\)?
\[q(x) = x^2 + bx + c \]

\[x_c = -\frac{b}{2} \]

min at R

\[\text{L} \quad \text{R} \]

\[X \]
If x_c is between L and R

Then min is at x_c

Otherwise

Min value is at one of the endpoints
Start with pseudocode

If xc is between L and R

Min is at xc

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can choose to work with any piece next: the if-else construct/condition, min at xc, or min at an endpoint
Set up structure first: if-else, condition

```python
if L<=xc && xc<=R
    Then min is at xc
else
    Min is at one of the endpoints
end
```

Now refine our solution-in-progress. I'll choose to work on the if-branch next.
Refinement: filled in detail for task “min at xc”

\[
\text{if } L \leq xc \land xc \leq R
\]

\[
\begin{align*}
\% & \text{ min is at } xc \\
qMin &= xc^2 + b*xc + c;
\end{align*}
\]

\[
\text{else}
\]

Min is at one of the endpoints

\[
\text{end}
\]

Continue with refining the solution... else-branch next
Refinement: detail for task “min at an endpoint”

```matlab
if L<=xc && xc<=R
    \% min is at xc
    qMin= xc^2 + b*xc + c;
else
    \% min is at one of the endpoints
    if \% xc left of bracket
        \% min is at L
    else \% xc right of bracket
        \% min is at R
    end
end
```

Continue with the refinement, i.e., replace comments with code
Refinement: detail for task “min at an endpoint”

if \(L \leq xc \) && \(xc \leq R \)
 % min is at xc
 qMin = xc^2 + b*xc + c;
else
 % min is at one of the endpoints
 if \(xc < L \)
 qMin = L^2 + b*L + c;
 else
 qMin = R^2 + b*R + c;
 end
end
Final solution (given b,c,L,R,xc)

```
if $L \leq xc \land xc \leq R$
    \% min is at $xc$
    qMin = xc^2 + b*xc + c;
else
    \% min is at one of the endpoints
    if $xc < L$
        qMin = L^2 + b*L + c;
    else
        qMin = R^2 + b*R + c;
    end
end
```

See `quadMin.m`
`quadMinGraph.m`

An if-statement can appear within a branch—just like any other kind of statement!
Notice that there are 3 alternatives→can use elseif!

```plaintext
if  L<=xc && xc<=R
    % min is at xc
    qMin= xc^2+b*xc+c;
else
    % min at one endpt
    if  xc < L
        qMin= L^2+b*L+c;
    else
        qMin= R^2+b*R+c;
end
end
```
Does this program work?

```matlab
score = input('Enter score: ');
if score > 55
    disp('D')
elseif score > 65
    disp('C')
elseif score > 80
    disp('B')
elseif score > 93
    disp('A')
else
    disp('Not good…')
end
```

A: yes
B: no