1-Dimensional Array: Vector

An array is a named collection of data values organized into rows and/or columns. A 1-d array is a row or a column, also known as a vector. An index is a positive integer that identifies the position of a value in the vector. MATLAB array index starts at 1, not zero. To access a value in an array, use parentheses to enclose the index value. For example, x(2) is the value in the 2nd cell of vector x. MATLAB distinguishes between row and column vectors. Numbers (or expressions) separated by commas or blanks and enclosed by square brackets give a row vector, while numbers separated by semicolons and enclosed by square brackets give a column vector.

Creating a vector

MATLAB function zeros: vecA = zeros(1,5)
MATLAB function ones: vecB = ones(5,1)
MATLAB colon expression for consecutive numbers: 1:6 or 1:1:6
Note that the syntax is (starting value):(increment):(ending bound), so the expression 7:-2:0 gives [7 5 3 1]. What if the colon expression specifies an “impossible” set? E.g., 5:1:0 will result in the empty set, which is the empty vector [] in MATLAB.

Assignment: vecC(5) = 9 gives [0 0 0 0 9]
Build vectors using square brackets: vecD = [2 3.5 6]
Use a blank or a comma as the separator to get a row; use a semi-colon as the separator to get a column.
Combine or concatenate vectors: [[4 5] [1 3 2]] gives [4 5 1 3 2]; [4 5 9:-1:6] gives [4 5 9 8 7 6].
“Grow” a vector: The statement v=[v 9] concatenates 9 to the end of vector v and re-assigns the entire new vector back to the name v. If you put this statement inside a loop, assuming that v has some intial value before the start of the loop, vector v will “grow” in length one cell at a time. Note that you can create an empty vector: v=[]. Such an assignment is sometimes used as an initialization for a variable.
Transpose a vector (change from row to column or vice versa): ’
Example: [3; 5; 1]’ gives the row vector [3 5 1]

2-Dimensional Array: Matrix

Type these statements in the MATLAB Command Window to see what matrices get created:

```matlab
m= [1 2 3 4; 5 6 7 8] % 2-by-4 matrix
[nr,nc]= size(m)
m= [m; zeros(1,nc)]
m= [m m]
m= [m; m]
v= 1:6
newm= [m v’]
newm= newm’
m1= rand(4,3) % 4-by-3 random matrix (uniform probability distribution)
```