Basic Mathematical Operations on Arrays

A picture as an matrix

1458-by-2084

<table>
<thead>
<tr>
<th>150</th>
<th>149</th>
<th>152</th>
<th>153</th>
<th>152</th>
<th>155</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>150</td>
<td>153</td>
<td>154</td>
<td>153</td>
<td>156</td>
</tr>
<tr>
<td>153</td>
<td>151</td>
<td>155</td>
<td>156</td>
<td>155</td>
<td>158</td>
</tr>
<tr>
<td>154</td>
<td>153</td>
<td>156</td>
<td>157</td>
<td>156</td>
<td>159</td>
</tr>
<tr>
<td>156</td>
<td>154</td>
<td>158</td>
<td>159</td>
<td>158</td>
<td>161</td>
</tr>
<tr>
<td>157</td>
<td>156</td>
<td>159</td>
<td>160</td>
<td>159</td>
<td>162</td>
</tr>
</tbody>
</table>

A color picture is made up of RGB matrices

\[M(i,j) = 0.3R(i,j) + 0.59G(i,j) + 0.11B(i,j) \]

For each row index \(i \)
For each column index \(j \)

Scalar operation

Vectorized Operation
(no loop required!)

<table>
<thead>
<tr>
<th>3R + 0.59G + 0.11B</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3R + 0.59G + 0.11B</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3R + 0.59G + 0.11B</th>
</tr>
</thead>
</table>

\[M = 0.3R + 0.59G + 0.11B \]

Vectorized addition

\[
\begin{align*}
x & = \begin{bmatrix} 2 & 1 & 0.5 & 8 \end{bmatrix} \\
y & = \begin{bmatrix} 1 & 2 & 0 & 1 \end{bmatrix} \\
\end{align*}
\]

\[
\begin{align*}
z & = x + y \\
& = \begin{bmatrix} 3 & 3 & 0.5 & 9 \end{bmatrix}
\end{align*}
\]

Matlab code:
\[z = x + y \]

means \(z(k) = x(k) + y(k) \) for all \(k \)
Vectorized element-by-element arithmetic operations on arrays

\[
\begin{array}{ccc}
\text{Vectorize +} & \rightarrow & \text{Vectorize +} \\
\text{Vectorize -} & \rightarrow & \text{Vectorize -} \\
\text{Vectorize *} & \rightarrow & \text{Vectorize *} \\
\text{Vectorize /} & \rightarrow & \text{Vectorize /} \\
\text{Vectorize ^} & \rightarrow & \text{Vectorize ^} \\
\end{array}
\]

A dot (.) is necessary in front of these math operators.

Vectorized code— a Matlab-specific feature

- Code that perform element-by-element arithmetic/relational/logical operations on vector (or array) operands in one step

 - Scalar operation: \(x + y \)
 where \(x, y \) are scalar variables

 - Vectorized code: \(x + y \)
 where \(x, y \) are vectors of same shape and length

Vectorized element-by-element arithmetic operations between an array and a scalar

\[
\begin{array}{ccc}
\text{Vectorize +} & \rightarrow & \text{Vectorize +} \\
\text{Vectorize -} & \rightarrow & \text{Vectorize -} \\
\text{Vectorize *} & \rightarrow & \text{Vectorize *} \\
\text{Vectorize /} & \rightarrow & \text{Vectorize /} \\
\text{Vectorize ^} & \rightarrow & \text{Vectorize ^} \\
\end{array}
\]

A dot (.) is necessary in front of these math operators.

The dot in \(+, -, * \) not necessary but OK.