
CS/ENGRD2110: Final Exam

12th of May, 2011

NAME : ____________________________________________________

NETID: ______________

• The exam is closed book and closed notes. Do not begin until instructed. You have 150 minutes.

• Start by writing your name and Cornell netid on top! There are 17 numbered pages. Check now that
you have all the pages.

• Web, email, etc. may not be used. Calculator with programming capabilities are not permitted. This
exam is individual work.

• We have scrap paper available. If you are the kind of programmer who does a lot of crossing out and
rewriting, you might want to write code on scrap paper first and then copy it to the exam.

• Write your answers in the space provided. Ambiguous answers will be considered incorrect. You should
be able to fit your answers easily into the space we provided. Answers that are not concise might not
receive full points. It you do need more space, use the back page of the exam.

POINTS:

Java Classes, Methods, and Types ______ / 19

Lists, Stacks, and Friends ______ / 17

Trees and BSTs ______ / 19

Dictionaries and Hashtables ______ / 9

Graphs ______ / 26

Graph Search ______ / 14

Sorting ______ / 10

Concurrency and Threads ______ / 15

Induction and Asymptotic Complexity ______ / 15

===========

Total ______ /144
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1 Classes, Interfaces, and Types

1. Answer the following questions with either true or false. No explanation necessary.
7 pts.

• Both interfaces and classes define the type system in Java.

• A type in Java can have more than one supertype.

• A type in Java can have more than one subtypes.

• A cast can be used to change the static type of a local variable.

• Downcasts can produce runtime errors.

• An abstract class cannot contain any method implementations.

• The dynamic type of an argument to an overloaded method determines which of the methods is
selected.

2. Write next to each method call in “main()” the output that it prints.
9 pts.

class A {
public void f(A a) { System.out.println("fa(A)"); }
public void f(B b) { System.out.println("fa(B)"); }

}

class B extends A {
public void f(A a) { System.out.println("fb(A)"); }
public void f(B b) { System.out.println("fb(B)"); }

}

public class TypeMeister {
public static void main(String[] args) {

A a = new A();
B b = new B();
A ba=(A)b;
// Write output next to each of the following:

a.f(a);

a.f(b);

b.f(a);

b.f(b);

a.f(ba);

b.f(ba);

ba.f(a);

ba.f(b);

ba.f(ba);
}

}
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3. Given the interface and class definitions from below, what are the methods that you definitely need to
implement yourself in class MyClass?

3 pts.

interface I {
public float mI(int a);

}

interface J extends I {
public int mJ(int a);
public Object mJJ(int a);

}

class C {
public void mC(int a) {

System.out.println(‘‘hello world’’);
}

}

class MyClass extends C implements J {
...
}
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2 Lists, Stacks, and Friends

1. Answer the following questions with either true or false. Assume there are n elements in the datastruc-
ture. No explanation necessary.

7 pts.

• One can implement a stack based on a linked list so that EACH INDIVIDUAL push/pop operation
is time O(1).

• One can implement a stack (of unbounded size) based on an array so that each individual push/pop
operation is time O(1).

• The core datastructure of Depth-First Search is a queue.

• One can reverse the order of the elements in a linked list in time O(n).

• It is possible to append two linked lists in time O(1).

• Adding an element to a heap has worst-case time complexity O(log(n)).

• Returning the maximum element in a max-heap (but not deleting it from the heap) can be done in
time O(1).

2. Construct a balanced binary max-heap (i.e. a heap that always returns the maximum element) using the
following elements, pushing them onto the heap in the given order:

7, 2, 1, 9, 12, 3, 14

Draw the heap after each completed insertion of an element.
6 pts.

4



3. Now pop (i.e. extract) the two largest elements off the heap. Draw the heap after each such extraction.
4 pts.
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3 Trees and BSTs

1. Give the preorder, inorder, and postorder traversal of the following tree.
6 pts.9

128

205

303

641 10

11

21 31

Preorder:

Inorder:

Postorder:

2. You have a binary search tree (BST) with n elements that has height h = O(log(n)), and you need to
find the k-th largest element in the tree. Can one find the k-th largest element without scanning through
all n elements (assuming k < n)? If yes, describe an algorithm (no code, just english). If not, provide a
counterexample.

6 pts.
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3. Write a recursive method static void mirrorTree(node root) that changes a given input
tree so that it becomes the mirror image of the original tree. For example:

6

72

83

9

6

27

38

9

For this question, assume you have a node class that has the basic methods implemented: getLeft(),
getRight(), setLeft(), setRight(), getValue(). All the values in a node are integers.

7 pts.

static void mirrorTree(node root) {
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4 Dictionaries and Hashtables

1. Chaining and probing are two methods used to resolve collisions in hash tables so that the amortized
access time is O(1). For each of the following claims, indicate whether it is true of chaining, probing,
both, or neither.

5 pts.

• Needs additional memory beyond the primary array for the hash table.

• Requires doubling the table periodically.

• May be either “linear” or “quadratic”.

• Crashes if the load factor become greater than 1.

• Requires computing the hash function multiple times when doing an insertion.

2. In order to utilize the predefined Java classes HashMap and HashSet, what two methods inherited from
class Object might need to be overridden?

4 pts.
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5 Graphs

1. Use Prim’s algorithm starting at node A to compute the Minimum Spanning Tree (MST) of the following
graph. In particular, write down the edges of the MST in the order in which Prim’s algorithm adds them
to the MST. Use the format (node1, node2) to denote an edge.

7 pts.

C D G

A

B

E

F

H

7

6

2
1

11

10

12

13

3

8

14 9

15

2. Given a graph G = (V,E), arbitrarily partition the nodes into two disjoint sets, V1 and V2. Let E1 be
all the edges such that both nodes in the edge are in V1; let E2 be all edges such that both nodes are
in V2; let E3 be all edges (u, v) such that u ∈ V1 and v ∈ V2. If we construct a Minimum Spanning
Tree M1 on (V1, E1) and a Minimum Spanning Tree M2 on (V2, E2), then connect M1 and M2 on the
lowest-weighted edge connecting M1 and M2, will it be a Minimum Spanning Tree of G? Give a proof
that the algorithm correctly computes the Minimum Spanning Tree, or give a counterexample that it does
not.

5 pts.
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3. Write down the adjacency matrix A of the following undirected graph. Note that each undirected edge
corresponds to two directed edges of weight 1.

4 pts.1 2 3

4

4. Let Pij be the number of paths of length two in the above graph that start from vertex i and finish in
vertex j. For example, P23 = 1 because there is only one path of length two that connects 2 and 3:
2—4—3. The same edge can be used many times in each path (i.e. 2—4—2 is a path). Write down the
matrix P , i.e. the number of paths of length 2 for each pair of vertices.

4 pts.

5. Describe in words an algorithm for computing the number of paths of length l between two given ver-
tices i and j. The graph is unweighted and you know its adjacency matrix A. State the runtime of your
algorithm in Big-O notation and explain why your algorithm has the specified runtime.
NOTE: Any correct algorithm will get points independent of its efficiency, but for full points your algo-
rithm should be logarithmic in l and polynomial in the number of vertices V .

6 pts.
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6 Graph Search

1. Give a pseudo-code implementation of a function bfs path(G,s,t,max) that uses Breadth-First
Search (BFS) to return true if an arbitrary weighted graph G contains a path from s to t that has cost less
or equal to max, and that otherwise returns false. Indicate which datastructures you are using. You can
assume that standard datastructures are available and that s 6= t.

7 pts.

2. In the graph below, use your algorithm from above to compute whether there is a path from node A to
node E that has cost of at most 4. In particular, whenever BFS expands a new node, show the content of
the main datastructure that BFS maintains. Break ties arbitrarily.

7 pts.
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7 Sorting

1. Answer the following questions with either true or false. No explanation necessary.
5 pts.

• HeapSort has worst-case time complexity of O(n log(n)).

• HeapSort makes no more than O(n2) pairwise comparisons.

• MergeSort has best-case time complexity of O(n).

• InsertionSort make no more than O(n log(n))) pairwise comparisons.

• SelectionSort is stable.
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2. Your friend shows you the following algorithm called weiredSort for sorting an array of numbers.
He claims that it makes O(n log(n)) comparisons in the worst case to sort numbers, since it is a
Divide-and-Conquer algorithm. Of course, he is wrong. Explain why the number of comparisons is
greater than O(n log(n)).

5 pts.

void weiredSort(int[] numbers) {
weiredSortRec(numbers, 0, numbers.length-1);

}

void weiredSortRec(int[] numbers, int lo, int hi) {
if (hi - lo > 0) {

int mid = (hi + lo) / 2;
weiredSortRec(numbers, lo, mid);
weiredSortRec(numbers, mid+1, hi);
sortPart(numbers, lo, hi);

}
}

void sortPart(int [] numbers, int lo, int hi) {
for (int i = lo; i < hi; ++i) {

for (int j = lo; j < hi-i; ++ j) {
if (numbers[j] > numbers[j+1]) {

swap(numbers, j, j+1);
}

}
}

}

void swap (int[] numbers, int x, int y) {
int temp = numbers[x];
numbers[x] = numbers[y];
numbers[y] = temp;

}
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8 Concurrency and Threads

1. Select the answer below which *best* fits: Two threads each hold a resource that the other is requesting.
This is an example of:

2 pts.

• Deadlock

• Resource contention

• Livelock

• Race condition

2. Select the answer below which *best* fits: When a program’s result relies upon the execution order of a
program’s threads, it is said to contain a:

2 pts.

• Deadlock

• Timing bug

• Livelock

• Race condition

3. Java contains built-in support for writing threaded programs. An example of this would be the (circle all
that apply):

2 pts.

• “synchronized” keyword.

• “for” loop.

• “Thread” class.

• “private” operator.

4. Answer the following questions with either true or false. No explanation necessary.
5 pts.

• Threads cannot access objects that were created by a different thread.

• When two threads simultaneously call the same method, one thread may overwrite the values of
the local variables of that method from the other thread.

• A Java program ends when the thread that executed main() terminates.

• If you run a Java program on a computer with 2 processors/cores, you can create at most 2 threads.

• One starts a Java thread by calling the method run().
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5. The following code may or may not be correct. It was written by someone who is looking to make a
counter class which is shareable between many threads. If it is correct, state why. If it is incorrect, fix it.

4 pts.

public class ShareableCounter
{

private int i;

public ShareableCounter()
{

i = 0;
}

public int inc()
{

i = i + 1;
return i;

}
}
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9 Induction and Asymptotic Complexity

1. Give the definition of “f(n) is O(g(n))”.
4 pts.

2. The following is a recursive version of InsertionSort. Write down the recurrence relation that describes
the number of write accesses to the array (i.e. array[...]=...) made in the worst case.

5 pts.

public static void sort(int[] array, int n) {
// sorts the first n elements of array
if(n == 0) {

return;
}
else {

int tmp = array[n-1];
sort(array,n-1);
int j;
for (j = n-1; (j > 0) && (array[j-1] > tmp); j--) {

array[j] = array[j-1];
}
array[j] = tmp;

}
return;

}
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3. Assume you have a recursive algorithm that has worst-case time complexity bounded by the following
recurrence relation. Prove that the algorithm is O(n2). Explicitly state the Base Case, the Inductive
Hypothesis, and the Induction Step.

6 pts.
T (1) = 3
T (n) = T (n− 1) + 2n
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