We practice finding a loop condition \(B \) by using the second loopy question: is \(\neg B && P \implies R \) true? Thus, we look for \(\neg B \) that makes \(\neg B && P \implies R \) true and complement \(\neg B \) to get \(B \).

Here’s the invariant \(P \) and postcondition for our first example.

\[
\begin{align*}
P: & \text{ s is the sum of } m..k-1 \text{ and } m \leq k \leq n \\
R: & \text{ s is the sum of } m..n-1
\end{align*}
\]

Knowing that \(P \) is true, and doing some pattern matching with \(P \) and \(R \), we see that \(R \) will be true if \(k = n \). Therefore, \(\neg B \) is \(k = n \), so the loop condition \(B \) is \(k \neq n \). Looking at the restriction on \(k \) in invariant \(P \), we can write the loop condition at \(k < n \) if we want. Thus, we use either

\[
\text{while } (k \neq n) \{ \ldots \} \quad \text{or} \quad \text{while } (k < n) \{ \ldots \}
\]

A second example

Here are the invariant and postcondition for a loop to calculate the minimum value in array segment \(b[0..n-1] \):

\[
\begin{align*}
P: & \text{ v = minimum of } b[0..k-1] \text{ and } 0 \leq k \leq n \\
R: & \text{ v = minimum of } b[0..n-1]
\end{align*}
\]

Using reasoning like we did the first example, you can see that we get the same answer for \(B \) as in the previous example.

\[
\text{while } (k \neq n) \{ \ldots \} \quad \text{or} \quad \text{while } (k < n) \{ \ldots \}
\]

Computing \(z = b^c \)

Here are the invariant and postcondition for a loop to store \(b^c \) in \(z \), given \(c \geq 0 \):

\[
\begin{align*}
P: & \text{ } b^c = z * x^y \text{ and } y \geq 0 \\
R: & \text{ } z = b^c
\end{align*}
\]

Again doing pattern matching, we see that \(R \) will be true when \(P \) is true and \(x^y = 1 \). That last formula, \(x^y = 1 \), is true, when \(y = 0 \). So our loop condition is \(y \neq 0 \):

\[
\text{while } (y \neq 0) \{ \ldots \}
\]

Exercises

In the two examples below, find the loop condition. Answers are at the end of the pdf script for this video.

1. \(P: \text{ s is the sum of } k..n-1 \text{ and } m \leq k \leq n \)
 \(R: \text{ s is the sum of } m..n-1 \)
2. \(P: \text{ v = minimum of } b[k..n] \text{ and } 0 \leq k \leq n \)
 \(R: \text{ v = minimum of } b[0..n] \text{ and } 0 \leq k \leq n \)

Answers

In the first exercise, doing pattern matching on \(P \) and \(R \), we see that \(k = m \) is needed. Therefore the loop condition is \(k = m \). This can be written as \(m < k \) if you want, since \(m \leq k \leq n \):

\[
\text{while } (k = m) \{ \ldots \} \quad \text{or} \quad \text{while } (m < k) \{ \ldots \}
\]

In the second exercise, pattern matching on \(P \) and \(R \), we see that \(k = 0 \) is needed. Therefore, the loop condition condition is \(k = 0 \). This can be written as \(0 < k \) if you want, since \(0 \leq k \leq n \):

\[
\text{while } (k = 0) \{ \ldots \} \quad \text{or} \quad \text{while } (m < k) \{ \ldots \}
\]