Practice with the third and fourth loopy questions

Introduction

The third and fourth loop questions are:

3. Does the repetend make progress toward termination? To see this, we generally give an expression whose value should decrease during execution of the repetend.

4. Does the repetend keep P true: Is \(\{B \&\& P\} S \{P\} \) true?

Summation

We develop the repetend of a loop that adds the values in range \(m..n-1 \). Here is the relevant information:

- **P**: \(s = \text{sum of } m..k-1 \text{ and } m \leq k \leq n \)
- **B**: \(k < n \)
- Progress: Decrease the expression \(n - k \)

The way to decrease the expression is to add 1 to \(k \): This means that one more value has to be added to \(s \). Since \(s \) contains the sum of \(m..k-1 \), the next value to add is \(k \). The repetend is:

\[
\{B \&\& P\} \ s = s + k; \ k = k+1; \ \{P\}
\]

Here are two more exercises for you to do. The answers can be found at the end of the script for this video. Please stop the video and do them — be careful.

1. **P**: \(s = \text{sum of } k..n-1 \text{ and } 0 \leq k \leq n \)
 - **B**: \(k > m \)
 - Progress: decrease \(k \)

2. **P**: \(v = \text{minimum of } b[0..k] \) and \(0 < k \leq n \)
 - **B**: \(k < n \)
 - Progress: increase \(k \)

We developed the repetend in an informal fashion. A later video shows how this repetend can almost be calculated.

Exponentiation

We are working on a loop to calculate \(b^c \) (\(b \) to the power \(c \)) for \(c \geq 0 \). Here are the invariant, the loop condition, and our way of getting closer to termination:

- **P**: \(b^c = z \times x^y \) and \(y \geq 0 \)
- **B**: \(0 < y \)
- Progress: Decrease \(y \)

The simplest \(y \) to decrease \(y \) is to subtract 1 from it. To see how to maintain the invariant when subtracting 1 from \(y \), we rewrite use this property of exponentiation: \(x^y = x \times x^{y-1} \). Therefore,

\[
z \times x^y = z \times x \times x^{y-1}.
\]

Thus, if we subtract 1 from \(y \), we can maintain the invariant by storing \(z \times x \) in \(z \), yielding the repetend:

\[
\{B \&\& P\} \ z = z \times x; \ y = y-1; \ \{P\}
\]

Earlier, we developed the initialization and loop condition, and the final algorithm is shown below. It makes \(c \) iterations. In lecture, we will see how this can be reduced greatly.

```c
x = b; y = c; while (y != 0) {z = z \times x; y = y-1; }
```

Answer to exercises

1. To make progress toward termination, use \(k = k-1 \); To keep invariant \(P \) true, a value has to be added to \(s \). We use

\[
s = s + k-1; k = k-1; \quad \text{or} \quad k = k-1; s = s + k;
\]

2. To make progress toward termination, use \(k = k+1 \); For \(P \) to be true after that, we need \(v = \text{minimum of } b[0..k] \). We can use either

\[
v = \text{Math.min}(v, b[k+1]); k = k+1; \quad \text{or} \quad k = k+1; v = \text{Math.min}(v, b[k]);
\]