
Recitation 2

Exception handling

Exceptions make your code crash
Exceptions

public static void main(String[] args) {
System.out.println(args[0]);

}

public static void main(String[] args) {
System.out.println(8 / 0);

}

public static void main(String[] args) {
System.out.println(null.toString());

}

What could happen without exceptions?
Exceptions

public static double getAverage(double[] b) {
double sum = 0;
for (int i = 0; i < b.length; i++) {

sum += b[i];
}
return sum / b.length;

}

If b.length is 0, what should be returned?
- Infinity
- “special” int - Integer.MAX_VALUE? 2110? 0?

Throwable@x2

“/ by zero”detailMessage

Throwable() Throwable(String)
getMessage()

Throwable

Superclass of exceptions: Throwable
Exceptions

When some sort of exception
occurs, an object of class
java.lang.Throwable (or one
of its subclasses) is created and
“thrown” --we explain later what
“throw” means.

The object has
1. Field to contain an error message
2. Two constructors
3. Function to get the message in the field

Superclass of exceptions: Throwable
Exceptions

Two subclasses of Throwable exist:
Error: For errors from which one can’t recover –don’t “catch” them
Exception: For errors from which a program could potentially
recover –it’s ok to “catch” them

Error@x2

“/ by zero”detailMessage

Throwable() Throwable(String)
getMessage()

Error() Error(String)

Throwable

Error

Exception@x2

“/ by zero”detailMessage

Throwable() Throwable(String)
getMessage()

Exception() Exception(String)

Throwable

Exception

A Throwable instance: ArithmeticException
Exceptions

ArithmeticException@x2

“/ by zero”detailMessage

There are so many different
kinds of exceptions we need to
organize them.

Throwable

Exception Error

RuntimeException

ArithmeticException

Throwable

Exception

ArithmeticException

RuntimeException

Throwing an exception
Exceptions

class Ex {
static void main(…) {

second();
}

static void second() {
third();

}

Static void third() {
int c= 5/0;

}
} AE

AE

When an exception is thrown, it is thrown to
the place of call, which throws it out further
to where that method was called. The code
that called main will “catch” the exception
and print the error message

Console:
java.lang.AE: / by zero

at Ex.third(Ex.java:11)
at Ex.second(Ex.java:7)
at Ex.main(Ex.java:3)

AE

AE = ArithmeticException

1
2
3
4
5
6
7
8
9
10
11
12
13

Method call: main(new String[] {});

Decoding the output from an exception
Exceptions

public static void main(String[] args) {
int div= 5/0;

}

1
2
3

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Animal.main(Animal.java:2)

Exception that
is thrown

line numbercalled method

message

Try statement: catching a thrown exception

try {
code (this is the try-block)

}
catch (MyException ae) {

code (this is the catch-block)
}

S; (code following the try statement)

To execute the try statement:

Execute the try-block. If it finishes
without throwing an exception, fine.

If the try-block throws a
MyException object, catch it
(execute the catch block); else
throw it out further.

If the exception was caught,
execution proceeds to the code S
following the try-statement.

ae is like a parameter. When the
catch-block catches a thrown object,
ae contains the object

throw keyword: Forcing a crash
Exceptions

Why might I want to crash
the application?

class Integer {
/** Parse s as a signed decimal integer.

* Throw a NumberFormatException
* if not possible */
public static int parseInt(String s){

...
}

}

parseInt(“42”) -> 42
parseInt(“Sid”) -> ???

if (can’t convert to int){
throw new NumberFormatException();

}

Demo 1: Read an Integer

● Ask the user to input an int
● Try to convert user input to an int
● If an exception is thrown, catch it and ask for more input

Exercise 3: Illegal Arguments

Create class Person with two fields, name and age.
Throw an IllegalArgumentException instead of
having preconditions when given a null name or a non-
positive age.

Exceptions

How to write an exception class
/** An instance is an exception */
public class OurException extends Exception {

/** Constructor: an instance with message m*/
public OurException(String m) {

super(m);
}

/** Constructor: an instance with no message */
public OurException() {

super();
}

}

Exceptions

throws clause
Exceptions

public static void second() {
…
String line= kyboard.readLine();
…

}

Exceptions

Unhandled exception type IOException

You may get an error message like the yellow one above. In that
case, insert a throws clause as shown below.

public static void second() throws IOException {
…
String line= kyboard.readLine();

}

throws clause for checked exceptions
Exceptions

If you’re interested in the “controversy”,
http://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

/** Class to illustrate exception handling */
public class Ex {

public static void main() {
try { second(); } catch (OurException e) {}
}

public static void second() throws OurException {
third();
}

public static void third() throws OurException {
throw new OurException("mine");

}
}

Exceptions

Demo 2: Pythagorean Solver

● Given a and b: solve for c in a2 + b2 = c2

● Reads in input from keyboard
● Handles any exceptions

Exceptions

Key takeaways

Thrown exceptions bubble up the call
stack until they are handled by a try-
catch block. In the system, the call of
method main is in a try-catch statement,
and its catch block prints out information
about the thrown exception.

http://xkcd.com/1188/

Alt-Text: I'm trying to build character
but Eclipse is really confusing.

