
CS/ENGRD 2110
SUMMER 2018
Lecture 1: Types and Control Flow

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

Lecture 1 Outline

◻ Languages Overview

⬜ Imperative vs Declarative.

◻ Types

◻ Variable Assignment

◻ Control Flow and Procedures

⬜ scoping

2

Languages
3

◻ Declarative vs Imperative languages
⬜ Declarative:

■ Specify what should be done, not how
■ Ex: SQL select * from people where name =

“Natacha””
⬜ Imperative

■ Specify both how and what should be done

◻ Java is imperative and procedural. What about Python?

Types
4

◻ Definition: A type is a set of values together with operations on them

◻ Java defines primitive types and reference types
⬜ Primitive types: Built-in types that act as building blocks for more

complicated types that we’ll look at next lecture
⬜ Reference types: Next lecture :)

◻ Example Type: integer:
⬜ values: …, –3, –2, –1, 0, 1, 2, 3, …
⬜ operations: +, –, *, /, unary –

◻ What about type boolean?

Most-used ‘primitive’ types
5

int: values: –231 .. 231–1

operations: +, –, *, /, %, unary –

size: 32 bits as signed integer

double: values like : –22.51E6, 24.9

operations: +, –, *, /, %, unary –

size: 64 bits as floating point number

char: values like : 'V' '$' '\n'

operations: none

size: 16 bits

boolean: values: true false

operations: ! (not), && (and), || (or)

size: 1 bit

Strong Typing

Matlab and Python are weakly typed:

One variable can contain at different
times a number, a string, an array, etc.

One isn’t so concerned with types.

6

Java strongly typed:
A variable must be declared before it is
used and can contain only values of the
type with which it is declared

Strong Typing

Matlab and Python are weakly typed:

One variable can contain at different
times a number, a string, an array, etc.

One isn’t so concerned with types.

7

Valid Python sequence:
 x= 100;
 x= ‘Hello World’;
 x= (1, 2, 3, 4, 5);

Java strongly typed:
A variable must be declared before it is
used and can contain only values of the
type with which it is declared

Strong Typing

Matlab and Python are weakly typed:

One variable can contain at different
times a number, a string, an array, etc.

One isn’t so concerned with types.

8

Valid Python sequence:
 x= 100;
 x= ‘Hello World’;
 x= (1, 2, 3, 4, 5);

Corresponding Java
int x;
x= 100;

x= “Hello”;

Java strongly typed:
A variable must be declared before it is
used and can contain only values of the
type with which it is declared

Declaration of x:
x can contain only

values of type int

Illegal assignment:
“Hello” is not an int

9

◻ The reason for all of this may not seem clear right now, will become
clearer in next couple of lectures

package packageName;
class myClass{

void proc() {...}
int fun() {...}
public static void main(String[] args) { fun(); proc(); … }

}

Program Structure in Java

◻ Must place myClass in file myClass.java

Basic variable declaration
10

10

Declaration: gives name of variable, type of value it can contain

int x; Declaration of x, can contain an int value

double area; Declaration of area, can contain a double value

int[] a; Declaration of a, an int array.

Assignment statement
11

11

Assignment: assigns value to a variable.

Much like in other languages —need ‘;’ at end:

 <variable>= <expression> ;

Assignment statement
12

12

Assignment: assigns value to a variable.

Much like in other languages —need ‘;’ at end:

 <variable>= <expression> ;

int x;
x= 10;
… other code
x= x+1;

Have to declare x before assigning to it.

int x= 10;
… other code
x= x+1;

Can combine declaration with an initializing
assignment. Shorthand for a declaration
followed by an assignment.

Weakly typed versus strongly typed
13

x = 75 + “Hello”;
int x = 75 + “Hello”;

What happens in Python?

myVar = 100;
 myVar = myvar + 1

print myVar

int myVar = 100;
myVar = myvar + 1;
System.out.println(myVar);

What happens in Python?

What happens in Java?

What happens in Java?

Weakly typed versus strongly typed

Weakly typed:

Shorter programs, generally.

Programmer has more freedom, language is more liberal
 in applying operations to values.

14

Strongly typed:
Programmer has to be more disciplined. Declarations
 provide a place for comments about variables.
More errors caught at compile-time (e.g. it’s a syntax error
 to assign a string to an int variable).

Note: weak and strong typing not well defined; literature
has several definitions

15

Functions & Procedures.

◻ Group linked actions into a single unit of execution
⬜ Functions take input parameters and return something
⬜ Procedures take input parameters and return nothing

16

Functions & Procedures.

◻ Group linked actions into a single unit of execution
⬜ Functions take input parameters and return something
⬜ Procedures take input parameters and return nothing

/** return sum of a and b */
public double sumFunction(double a, double b) {
 System.out.println(“Sum of ” a + “ and “ + b);

return a + b;
}

Specification: in comment before function

Parameter declarations

Function Body

Return Type

/** prints sum of a and b */
public void sumProcedure(double a, double b) {
 System.out.println(“Sum is ”+ (a + b));
}

No Return Type for Void
procedures

17

Control Flow Recap

◻ Control flow syntax is similar to other languages
⬜ For (initialisation; termination; increment)

■ For (int i = 0 ; i < 10 ; i++) { … }
⬜ While(boolean_expresion)

■ While (i < 10) { … ; i++}
⬜ If (boolean_exp)

■ If { … } else { … }

◻ Branching statements
⬜ Break: Exit loop
⬜ Continue: Skip concurrent iteration of loop
⬜ Return: Exit function immediately

18

Local Variables

◻ Definition: defined inside a function/procedure or in any conditional block.
They have block-level scope and are only accessible in the block where
they are defined.

19

Local Variables

◻ Definition: defined inside a function/procedure or in any conditional block.
They have block-level scope and are only accessible in the block where
they are defined.

/** return sum of a and b */
public double sumFunction(double a, double b) {
 double sum = a + b;
 System.out.println(“Sum of ” a + “ and “ + b);
 return sum;
}

◻ Use local variables to write clean code and avoid repetition!

20

Local Variables - Scoping

◻ Definition: defined inside a function/procedure or in any conditional block.
They have block-level scope and are only accessible in the block where
they are defined.

◻ A block is defined by a starting bracket { and a closing bracket }

◻ Local variables are destroyed once they go outside of scope

21

Local Variables - Shadowing

◻ Definition: A variable shadows another if they have the same name and
are accessible in the same place.

◻ To what declaration does a name refer?
⬜ Code in a block can reference names declared in that block, as well

as names that appear in enclosing blocks.

⬜ Use inside-out rule: Look first in method body, starting from name and
moving out; then look at parameters; then look outside method in the
object.

22

Local Variables - Shadowing

◻ Always give clear names to your variables
◻ Create variables with the smallest possible scopes. As close to their first

use

double sum = 0.0;
/** return sum of a and b */
double sumFunction(double a, double b) {
 if (a>0.0) {
 double sum = a + b;
 System.out.println(“Sum is “ + sum);
 }
 System.out.println(“Sum is “ + sum);
 return sum;
}

k

What will the print statements
output?

References in JavaHyperText
23

type
primitive type
type, strong versus weak typing
function
function call
procedure
procedure call
variable
variable declaration
expression
assignment statement
local variables

