1

Obiject-oriented programming
and data-structures

CS/ENGRD 2110
SUMMER 2018

Lecture 1 Recap
-2 4

1 Primitive Types in Java
1 Functions/Procedures
1 Basic Conftrol Flow Structures

1 Local Variables

Lecture 2 Objects (finally ...)

Obijects

How to define an object.
How to use an object.
Consfructors

Pass-by-value, pass-by reference

Why object-oriented?

Primitive types become restrictive

May want to group related information together
Ex: a Date consists of
A day (int), a month (String), a year (inf)

Might not want to just store datq, but also associated functions
Ex: A function that prints the date in British or American style.,

Use these complex types as building blocks for your program

Classes

Definition Classes describe the blueprint/template of different concepts (Date,
Person, Animal, etc.)

Classes group conceptually related state (as fields) and behaviour (methods)
Fields Variables that belong to a class
Methods Functions or procedures that belong to a class

Obijects represent distinct instances of a class
Person natacha;
Person chris;

Object natacha is an instance of class Person

Defining a class
.,

1 Declare state and define methods it contains

Defining a class
]

(((\E e

1 Declare state and define methods it contains

/** Definition of what class 1s for **/ Class definifion Date goes
in its own file named

class Date { Date iCIVCI
String month; .
int day; On your hard drive, have
Int year; separate directory for each
void printDateUK() {...} Behaviour Java |Or0|eC_Jr you write; put
void printDateUS {...} all class definitions for

program in that directory.
You'll see this when we
demo.

Commenting c

Every field should have a comment describing what it represents and
what valid inputs are

A class should have comments describing its purpose

Method functionality should also be described
Methods have a precondition, and a postcondition
Ex: in a setDay(int day) method, precondition is that day to be
below 31.

JavaDS describes what we expect (you'll see in homework)

Creating instances/objects

Obijects are created in three steps

They are declared: give a variable name and an object type
Date dateOfBirth;

Creating instances/objects

Obijects are created in three steps

They are declared: give a variable name and an object type

Date dateOfBirth;
They are instantiated: a memory location is created for that object
and fields are assigned default values

Date dateOfBirth = new

Creating instances/objects

Obijects are created in three steps

They are declared: give a variable name and an object type
Date dateOfBirth;
They are instantiated: a memory location is created for that object
and fields are assigned default values
Date dateOfBirth = new
They are initialised:
Date dateOfBirth = new Date();
Call to constructor initialises the object;

k(\((\Ef;\\

Constructors

Constructor
Method called when object is constructed
Initialize fields of a new object so that its class invariant is true

Constructor has the same name as the class, and no return type
Every class has an (implicit?) default constructor

Classes may have multiple constructors,

Constructors

class Date {
String month; int day; int year;

Date(String pMonth, int pDay, int pYear) {
month = pMonth;
day = pDay;
year = pYear;

}

Date(int pMonth, int pDay, int pYear) {
month = convertToString(pMonth);
day = pDay;
year = pYear;

}

void printDateUK() {...}

void printDateUS {...}

Constructors also allow to
check whether input to
fields is consistent with
precondition without
repetition. Ex: replacing day
with day =
checkinRange(pDay)

Using Objects And Classes

Classes can be used as part of building blocks for more complex types
Compose classes easily
class Person { String name ; Date dob ... }

(((\E‘;\\

k(\((\E‘;\\

Using Objects And Classes

Classes can be used as part of building blocks for more complex types
Compose classes easily
class Person { String name ; Date dob ... }

Fields in a class are accessed through an instance of that class
Given an instance Date date, access field month by date.month

Methods in a class are accessed through an instance of that class
Given an instance Date date, call method printDateUK
date.printDateUK()

References

Recall: Java has primitive types and class types
When declare a primitive type, return that type directly

When declare and create an object via the new keyword, return a

reference to that object
Can view it as a name for the object that we can look up whenever

want to access that object

Date
Date date = — 7 ObJeCt

inti= 0 double i= |37

intfflaray= ———— {1,2,3,4}

References - Consequences

Cannot simply compare whether two objects are equal by ==
This is comparing their reference or name, which is unique
Try creating two identical Strings and testing whether they are equal

(We'll see later how to do it correctly)

Impacts semantics of methods

References - Parameter Passing

Parameters in a method can be passed either by:

Pass-by-value
Creates a copy of the parameter and passes that copy
Modifications in the method to the original element has no impact
Pass-by-reference
Directly passes a reference to the parameter

Modification to the original element are reflected

References - Parameter Passing

Java is exclusively passed-by-value: primitive types and references to
objects are copied to create method arguments

But (and this is where people get confused), a copy of a reference Xis
still pointing to the same object X. In contrast, a copy of integer i points
to a different integer i.

Modifications to objects inside a method are reflected outside of the
method, modifications to primitive types aren't.

Other languages give you more flexibility to choose:
C++ allows you to specify methods in three ways:

swap(int x, inty), swap(int* x, int* y), swap(int§ x, int& y)

References - Swap Function

inta=0;

Intb=10;

swap(a,b);
System.out.println(a + *“ *“ + b);

void swap(int a, int b) {
int tmp = a;
a=Db;
b = tmp;

What will the different System.out.printin()
print if pass-by-value or pass-by-reference

MyInt a = new MyInt(0);
MyInt b = new MyInt(10);
System.out.println(a);
System.out.println(b);
swap(a,b);
System.out.println(a);
System.out.println(b);
System.out.println(a.mylInt);
System.out.println(b.myInt);

void swap(Mylnt a, MyInt b) {
int tmp = a.myint;
a.myint = b.myint;
b.myint = tmp;
MylInt tmplInt = a;
a=Db;
b = tmplnt;

null

Denotes the absence of a reference
Date date; or Date date = null;

There is no equivalent for primitive types
Primitive types implicitly get initialised to default values
Try printing the value of int i and of Date date;

Useful to explicitly state that no instance currently exists, but one may in the
future.

If avariable is null, cannot call a method or field on that object (doesn’t exist)

static

State/behaviour can sometimes be associated with a class rather than a
specific instance of a class.

A static field is created only once in the program's execution, despite
being declared as part of a class

A static method is invoked directly, without going through a specific
instance
Date.convertToString(pMonth)

What about the main method in Java?

k(\((\E‘;\\

static

static String dateUKFormat = “dd/mm/yyyy”

static String dateUSFormat = “mm/dd/yyyy”

static String convertToString(int month) {
String monthSt = null;

switch(month) { This is a switch statement.

|
case 1: monthSt = “January”; break; Lookup the syntax!

case 2: monthSt = “February”’; break ;

b

return monthSt;

When to use static

Should method: isDateEarlier be static?
boolean isDateEarlierThan(Date date) {

if (year < date.year) { return true; } ...

Or static boolean isDateEarlierThan(Date datel, Date date2) {

if (datel.year < date2.year) { return true;} ...

Good example of static methods: java.lang.Math

Or find it by googling Java 8 Math

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

References in JavaHyperText

object
instance

class

static

null

field

method
pass-by-value

pass-by-reference

