
CS/ENGRD 2110
SUMMER 2018
Lecture 2: Objects

http://courses.cs.cornell.edu/cs2110/2018su

Object-oriented programming
and data-structures

1

◻ Primitive Types in Java

◻ Functions/Procedures

◻ Basic Control Flow Structures

◻ Local Variables

Lecture 1 Recap
2

◻ Objects

◻ How to define an object.

◻ How to use an object.

◻ Constructors

◻ Pass-by-value, pass-by reference

Lecture 2 Objects (finally …)
3

Why object-oriented?

◻ Primitive types become restrictive

◻ May want to group related information together
⬜ Ex: a Date consists of

■ A day (int), a month (String), a year (int)

◻ Might not want to just store data, but also associated functions
⬜ Ex: A function that prints the date in British or American style.

◻ Use these complex types as building blocks for your program

Classes

◻ Definition Classes describe the blueprint/template of different concepts (Date,
Person, Animal, etc.)

◻ Classes group conceptually related state (as fields) and behaviour (methods)
⬜ Fields Variables that belong to a class
⬜ Methods Functions or procedures that belong to a class

◻ Objects represent distinct instances of a class
⬜ Person natacha;
⬜ Person chris;

■ Object natacha is an instance of class Person

Defining a class

◻ Declare state and define methods it contains

Defining a class

◻ Declare state and define methods it contains

/** Definition of what class is for **/

class Date {

String month;
int day;
int year;

void printDateUK() {...}
void printDateUS {...}

}

State

Behaviour

Class definition Date goes
in its own file named
Date.java

On your hard drive, have
separate directory for each
Java project you write; put
all class definitions for
program in that directory.
You’ll see this when we
demo.

Commenting

◻ Every field should have a comment describing what it represents and
what valid inputs are

◻ A class should have comments describing its purpose

◻ Method functionality should also be described
⬜ Methods have a precondition, and a postcondition

■ Ex: in a setDay(int day) method, precondition is that day to be
below 31.

◻ JavaDS describes what we expect (you’ll see in homework)

Creating instances/objects

◻ Objects are created in three steps

⬜ They are declared: give a variable name and an object type
■ Date dateOfBirth;

Creating instances/objects

◻ Objects are created in three steps

⬜ They are declared: give a variable name and an object type
■ Date dateOfBirth;

⬜ They are instantiated: a memory location is created for that object
and fields are assigned default values
■ Date dateOfBirth = new

Creating instances/objects

◻ Objects are created in three steps

⬜ They are declared: give a variable name and an object type
■ Date dateOfBirth;

⬜ They are instantiated: a memory location is created for that object
and fields are assigned default values
■ Date dateOfBirth = new

⬜ They are initialised:
■ Date dateOfBirth = new Date();
■ Call to constructor initialises the object;

◻ Constructor
⬜ Method called when object is constructed
⬜ Initialize fields of a new object so that its class invariant is true

◻ Constructor has the same name as the class, and no return type

◻ Every class has an (implicit?) default constructor

◻ Classes may have multiple constructors.

Constructors

Constructors
/** Definition of what class is for **/
class Date {

String month; int day; int year;
 /** Constructor: instance with pMonth, pDay, pYear. Precondition, pMonth in Jan-Deb, pDay in 0/31, pDay in .

*/
Date(String pMonth, int pDay, int pYear) {

month = pMonth;
 day = pDay;

year = pYear;
 }

Date(int pMonth, int pDay, int pYear) {
month = convertToString(pMonth);

 day = pDay;
year = pYear;

 }
void printDateUK() {...}
void printDateUS {...}

}

Constructors also allow to
check whether input to
fields is consistent with
precondition without
repetition. Ex: replacing day
with day =
checkInRange(pDay)

Using Objects And Classes

◻ Classes can be used as part of building blocks for more complex types
⬜ Compose classes easily
⬜ class Person { String name ; Date dob … }

Using Objects And Classes

◻ Classes can be used as part of building blocks for more complex types
⬜ Compose classes easily
⬜ class Person { String name ; Date dob … }

◻ Fields in a class are accessed through an instance of that class
⬜ Given an instance Date date, access field month by date.month

◻ Methods in a class are accessed through an instance of that class
⬜ Given an instance Date date, call method printDateUK

date.printDateUK()

References

◻ Recall: Java has primitive types and class types

◻ When declare a primitive type, return that type directly

◻ When declare and create an object via the new keyword, return a
reference to that object
⬜ Can view it as a name for the object that we can look up whenever

want to access that object

 0 3.7

Date
Object

int i = double i =

Date date =

{1,2,3,4}int[] array =

References - Consequences

◻ Cannot simply compare whether two objects are equal by ==

⬜ This is comparing their reference or name, which is unique

⬜ Try creating two identical Strings and testing whether they are equal

⬜ (We’ll see later how to do it correctly)

◻ Impacts semantics of methods

References - Parameter Passing

◻ Parameters in a method can be passed either by:

⬜ Pass-by-value

■ Creates a copy of the parameter and passes that copy

■ Modifications in the method to the original element has no impact

⬜ Pass-by-reference

■ Directly passes a reference to the parameter

■ Modification to the original element are reflected

References - Parameter Passing

◻ Java is exclusively passed-by-value: primitive types and references to
objects are copied to create method arguments

⬜ But (and this is where people get confused), a copy of a reference X is
still pointing to the same object X. In contrast, a copy of integer i points
to a different integer i.

⬜ Modifications to objects inside a method are reflected outside of the
method, modifications to primitive types aren’t.

◻ Other languages give you more flexibility to choose:

⬜ C++ allows you to specify methods in three ways:

■ swap(int x, int y) , swap(int* x, int* y), swap(int& x, int& y)

References - Swap Function

int a = 0;
Int b = 10;
swap(a,b);
System.out.println(a + “ “ + b);

void swap(int a, int b) {
int tmp = a;
a = b;
b = tmp;

}

MyInt a = new MyInt(0);
MyInt b = new MyInt(10);
System.out.println(a);
System.out.println(b);
swap(a,b);
System.out.println(a);
System.out.println(b);
System.out.println(a.myInt);
System.out.println(b.myInt);

void swap(MyInt a, MyInt b) {
int tmp = a.myint;
a.myint = b.myint;
b.myint = tmp;
MyInt tmpInt = a;
a = b;
b = tmpInt;

}

What will the different System.out.println()
print if pass-by-value or pass-by-reference

null

◻ Denotes the absence of a reference
⬜ Date date; or Date date = null;

◻ There is no equivalent for primitive types
⬜ Primitive types implicitly get initialised to default values

■ Try printing the value of int i and of Date date;

◻ Useful to explicitly state that no instance currently exists, but one may in the
future.

◻ If a variable is null, cannot call a method or field on that object (doesn’t exist)

static

◻ State/behaviour can sometimes be associated with a class rather than a
specific instance of a class.

◻ A static field is created only once in the program's execution, despite
being declared as part of a class

◻ A static method is invoked directly, without going through a specific
instance
⬜ Date.convertToString(pMonth)

◻ What about the main method in Java?

static

◻ static String dateUKFormat = “dd/mm/yyyy”
◻ static String dateUSFormat = “mm/dd/yyyy”
◻ static String convertToString(int month) {

 String monthSt = null;
switch(month) {

case 1: monthSt = “January”; break;
case 2: monthSt = “February”; break ;
...

}
return monthSt;

}

This is a switch statement.
Lookup the syntax!

When to use static

◻ Should method: isDateEarlier be static?
⬜ boolean isDateEarlierThan(Date date) {

if (year < date.year) { return true; } ...
}
⬜ Or static boolean isDateEarlierThan(Date date1, Date date2) {

if (date1.year < date2.year) { return true;} ...
}

◻ Good example of static methods: java.lang.Math
⬜ http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
⬜ Or find it by googling Java 8 Math

http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

object

instance

class

static

null

field

method

pass-by-value

pass-by-reference

References in JavaHyperText

