
Discussion 11
Prelim 2 review

CS 2110, FA23



Topics

● Data Structures
● Efficiency
● Recursion
● Trees
● Loop Invariants & searching
● Sorting & comparisons
● Dictionaries & hashing
● GUIs & lambda expressions
● Concurrency



Data structures



Examine the following Java class for a linked node: 

public class Node<T> {
private Node<T> next;
private T data;
public Node(T init, Node<T> nextNode) {

data = init;
next = nextNode;

}
// No other methods exist.

}

Complete the following tasks:

1. Create (with Java code) a chain of 3 Nodes that contain the strings “Lorem”, “Ipsum”, and 
“Dolor” in order.

2. Create (with Java code) a chain of 2 Nodes that point to the same String array (i.e. they 
reference the exact same object); the array should contain {“Lorem”, “Ipsum”, “Dolor”}.



Explain why the following real-world data / ADT pairs 
would be unsuitable. 
1. The items in a student’s backpack | List
2. Tasks that need to be completed for a project | Bag
3. The line to order flatbreads at Mac’s | List

1. The previous web pages visited by a user which is used by the browser 
when they click the back button 

2.  The jobs needed to be completed by a printer

Match the following real world data to the most appropriate 
ADT Options ( Bag, List, Stack, Queue)



What is the best case and worst case time complexity for the following?  Let N denote 
the size of the list

1. Adding an element at a specified position in a singly linked list
2. Adding an element at a specified position in a doubly linked list
3. Getting the previous node in a singly linked list (given the current node)
4. Getting the previous node in a doubly linked list (given the current node)
5. Getting an element at a specified row and column in a table implemented as a singly 

linked list (M rows) of singly linked lists (up to N columns)
6. Appending an element to a fixed-capacity queue implemented with a circular array
7. Appending an element to an unbounded queue implemented with a dynamic array

Time complexity



Implementation of a Stack

Using a linked structure approach, a Stack can be represented by a Node<T> 
field called head that is the most recent item that was added to the stack. The 
Node<T> class has methods data() which returns the node’s data and next() 
which returns the node containing the item that was added before it.  An empty 
stack has a null head.

● Implement the pop operation pop() which removes the node at the top of the 
stack and returns that node’s data as a result. Throws an 
EmptyStackException if the stack is empty.



Imagine you are given the following iterator:

Iterator<Integer> iterator = collection.iterator();

Write a while-loop to print out every element of the 
collection on a new line.



Efficiency



Big Oh Notation

● Show that 5x2+2x+1 is in O(n2)

● Show that 10+10x is in O(n)

● Show that x+5 is in O(n2)



Given the following problems state what quantity 
describes the problem’s size and state the algorithm’s 
worst case time complexity (in terms of that size) in Big 
Oh notation

1. Computing the mean of an array of integers
2. For some Set, enumerate every subset of size 2
3. Finding a particular value in a binary search tree
4. Finding a particular value in a sorted array using binary search



Analyzing algorithm

Consider some BST class, and 
assume it has method add(), which 
adds nodes to the tree in BST format.

Consider the search algorithm shown. 
What is the best and worst time 
complexities of this method, in terms of 
the size of the tree? 



Recursion



Sequence of Recursive Calls

Given a recursive function and some argument values, write the sequence of 
calls to the function and the output it returns from each call.

    /**returns the nth fibonacci number, where fib(0) and fib(1) are 1
     * Precondition: n must be positive
     * */
    public static int fib(int n){
        if(n==0 || n == 1) {
            return 1;
        }
        else{
            return fib(n-1) + fib(n-2);
        }
    }

What is the sequence 
of calls for:

fib(0)

fib(2)

fib(4)



Solution

1) fib(0)=1
2) fib(2), fib(1)=1, fib(0)=1

=2
3) fib(4), fib(3), fib(2), fib(1)=1, fib(0)=1, fib(1)=1, fib(2), fib(1)=1, fib(0)=1

=2   =2
   =3

=5



Implementing a recursive function: tacoCat()

Recursively implement the following method according to its specification:

/** 
  * Returns the tacocat-version of input String [s]. A tacocat-version of 
  * String [s] is [s] concatenated with the reverse of [s], but without the 
  * resulting middle character duplicated.
  *
  * Ex: tacoCat(“taco”) ⇒ “tacocat”
  *     tacoCat(“race”) ⇒ “racecar”
  *     tacoCat(“kay”)  ⇒ “kayak”
  */
public static String tacoCat(String s) {

// Your implementation here…

}

Author: Justin Guo (jjg283)



Space Complexity of a Recursive Algorithm

For example consider the Fibonacci function:

int fib(int n) {

if (n <= 1) {

// base case

return 1; 

} else {

     // recursive case

return fib(n – 1) + fib(n – 2); 

}

}

State its space complexity in Big O notation as a function of its parameters (n).



Trees



Give a preorder, inorder and postorder traversal of this graph.

Example taken from: https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/#

Benjamin Tang: Preorder, Inorder, Postorder



Big Oh notation

What is the worst-case time complexity for the following, given a BST of n nodes?

Checking if a number is in the BST

Computing the depth of the BST



Binary Trees and Binary Search Trees

For both of these trees, state whether each of them are a:

- Binary Tree
- Binary Search Tree



Loop invariants & searching



State the numbers that are contained in the sequences 
below given the following range notation
a is an array in the examples below

[1,2]

[1,2)

(2,2)

(1,4]

a[1..4]

a[....4)

a[....4]

a(1…]



Creating Loop Invariants from Preconditions and Postconditions
The array a, declared as int[] a, contains elements that are either 1 or 2. Given 
the precondition and postcondition shown below, draw a loop invariant for this 
array.

a:

a:

?

1 2

Precondition

Postcondition



Fill in the loop

Precondition:

Loop Invariant:

Postcondition (after post-loop swap):

b

b

b

x

x

x

?

<= x >= x?

<= x >= x

h

h

h

t j k

t j k

Fill in the missing parts (1-8) of the 
following code to make the loop correct :
public static void partition(int[] b, int h, int k){
   int t = (1)_______;
   int j = (2)_______;
   int x = b[h];

   while(t < (3)_____){
       if (b[(4)______] <= x){
           t++;
       } else {
           swap(b, (5)____, (6)____);
           j--;
       }
   }
   swap(b, (7)____, (8)____);
}

Note: this is the method postcondition, not the loop postcondition (it is not consistent with the invariant).



Sorting & comparisons



State the worst-case time complexities (in terms of the 
number of items to be sorted, N) for:

● Selection Sort
● Insertion Sort
● Merge Sort
● Quick Sort



What is the worst case space complexity for the following, 
in terms of the number of items to be sorted, N?

- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort



Give the tightest bound for worst-case time complexity of 
the following: 

1. Merge sort on an ArrayList of size n^2
2. Quick sort on an ArrayList of size sqrt(n)
3. Insertion sort on a LinkedList of size n log n 



Dictionaries & hashing



Draw the following hashtable (representing a Set) after it is 
resized to have a length of 9. The names are the keys, and 
the numbers are the hashes associated with each key.

0

1

2

3

4

“John” 7893

“Jake” 8640

“Max” 7638

“Julie” 2552

“May” 2559



What is the index of a key with hash code 26 when 
inserted into this hash table using linear probing?

29



Load Factors

Compute the load factor of the HT below. And what should the new bucket size be if we want the load factor to be 0.75 

0

1

2

3

4

“John” 7893

“Jake” 8640

“Max” 7638

“Julie” 2552

“May” 2559



GUIs & lambda expressions



Identify the event object, event source, and listener for handling button clicks.
class App extends JFrame
   implements ActionListener {

  App() {

    JButton b = new JButton("B");

    add(b);

    b.addActionListener(this);

  }

  @Override

  public void actionPerformed(
   ActionEvent e) {

    print("Prelim " + e.getSource());

  }

}



EDT Thread

An operation needed for a program takes 10 minutes to run, would it be 
appropriate to execute the operation on Swing’s event dispatch thread?



Concurrency



Three cats are at a table. Each cat cannot start eating until they have two 
chopsticks. They acquire one chopstick at a time and do not put them 
down until they have eaten. (The cats know how to use chopsticks and 
they refuse to eat without them.) 

a) If there are 4 chopsticks, is it possible for all of the cats to starve? 
b) If there are 3 chopsticks, is it possible for all of the cats to starve? 

What computer science term describes the situation in which all cats 
starve? 



Execution of Two Threads

Assume that the initial value of z is 3 and consider the code below in two 
threads. What are the possible values of z after execution of the two 
threads?

Thread 1: Thread 2:

z =z*2 z = z+5



Deadlock

● Given two sequences of instructions (in pseudocode or Java) that are executed concurrently and require exclusive 
access to one or more shared resources, state whether deadlock is possible. If so, propose an alteration to one of 
the sequences that eliminates this possibility while preserving the desired behavior of the original instructions.

Process 1:
1) Acquire X 
2) Use X
3) Release X
4) Acquire Y
5) Acquire Z
6) Use Y and Z
7) Release Y
8) Release Z

Process 2:
1) Acquire X 
2) Use X
3) Release X
4) Acquire Z
5) Acquire Y
6) Use Y and Z
7) Release Y
8) Release Z

Given some variables X, Y, and Z on 
these two processes:

- Can deadlock occur if these 
processes happen simultaneously?

- If so, where, and what change can 
be made to avoid deadlock? 


