

Invariant and theorem

- "Settled set" vertices whose neighbors have all been discovered
 - Path distance is shortest possible
 - Neighbors are either in the frontier or are settled themselves
- For each frontier vertex, we know the shortest path so far, and it only goes through settled vertices
 - Paths are only updated when v is being visited, about to be settled

- Theorem:
 - If *f* is the vertex in the frontier with the *smallest* candidate path, then that path is the shortest possible path from *start* to *f*
 - Consequence: *f* is ready to be settled

Exercise: Tracing Dijkstra's algorithm

Frontier (priority queue)					
а					
Vertex state					
Vertex	а	b	с	d	е
Dist	0				

Exercise: Complexity analysis

