
Hash codes and indices

• Two step process:
1. Hash a key into an int (“hash 

code”)
2. Turn a hash code into an array 

index (“index derivation”)
• Depends on array length!

• Object defines a hashCode() 
method
• Any Java object can be used as a 

key
• Implementer must ensure hash 

code is consistent with equality
• If overriding equals(), must 

override hashCode() too!

• Keys should be immutable
• If hash code changes, entries will 

be at the wrong index
• Ex) Lists are bad keys!

Step 1: Implementing hashCode()

• Goal: two non-equal objects 
should be unlikely to share a 
hash code
• Should depend on all of an 

object’s state
• Should depend on ordering of any 

sequential state (e.g. arrays)
• Should span whole range of 

integers

• Objects.hash(), 
Arrays.hashCode() can help

• When analyzing performance, 
we will assume hashCode() is 
O(1)
• i.e. independent of the parameter 

we’re analyzing.
• Usually we want to analyze how 

many entries there are, not about 
the size of the entries.

• Long strings, data tables would not 
make performant keys



Step 2: Deriving an index

• h(“Hopper”) -> -95141326;
Now what?
• Need an index between 0 and 

array length
• Solution: compute the 

remainder
• index = abs(hash % a.length)

Index Element
0 null

1 null

2 null

3 (Turing, 1912-06-23)
4 null

5 (Johnson, 1918-08-26)

6 (Hopper, 1906-12-09)
7 (von Neumann, 1903-12-28)

Collision resolution approaches

Chaining
• Treat array elements as 

“buckets” storing a collection of 
entries (e.g. a linked list)
• Finding the right bucket is O(1), 

but searching it will be slower

Probing
• Array elements point directly to 

entries
• If desired element is occupied, 

pick the next element to try 
according to a probing sequence



Exercise: Chaining example
Key Hash code Index (%8) Value
Jenny 126 6 x5309
Eddie 97 1 x7766

Brenda 86 6 x5635

Jack 255 7 x5555
Stacy 118 6 x7666

0

1

2
3

4

5

6
7

Informational table

Load factor

! = number	of	elements
number	of	buckets

• May be >1 for chaining (but not 
for probing)

• Expected cost of lookup with 
chaining is O(λ)
• For probing, see DSAJ

• Is that good?
• If array size is fixed, then λ is O(N)

• If array size is proportional to N, 
then λ is O(1)

• Must use a dynamic array for 
good performance



Exercise: Linear probing example
Key Hash code Index (%8)
Jenny 126 6
Eddie 97 1

Brenda 86 6

Jack 255 7
Stacy 118 6

0

1

2
3

4

5

6
7

Linear Probing Exercise

Remove Brenda, then ask 
whether the set contains Stacy.
1. What should happen?
2. What will happen?

0 Jack

1 Eddie
2 Stacy

3

4

5
6 Jenny

7 Brenda

Key Hash code Index (%8)
Jenny 126 6
Eddie 97 1

Brenda 86 6

Jack 255 7

Stacy 118 6


