
CS 2110 1Lecture 18: Heaps and Priority Queues October 28, 2025

Complexity of Binary Search Tree find()
Recall the Binary Search Tree find method from last lecture.
What is the worst-case time complexity for find()?
Write your answer in terms of size, S, of the tree.

CS 2110 2Lecture 18: Heaps and Priority Queues October 28, 2025

PollEv.com/leahp
text leahp to 22333

Complexity of Binary Search Tree find()
Recall the Binary Search Tree find method from last lecture.
What is the worst-case time complexity for find()?
Write your answer in terms of size, S, of the tree.

A) O(1)
B) O(log(S))
C) O(S)
D) O(S2)

CS 2110 3Lecture 18: Heaps and Priority Queues October 28, 2025

PollEv.com/leahp
text leahp to 22333

Complexity of Binary Search Tree find()
Recall the Binary Search Tree find method from last lecture.
What is the worst-case time complexity for find()?
Write your answer in terms of size, S, of the tree.

A) O(1)
B) O(log(S))
C) O(S)
D) O(S2)

Draw a tree that
leads to worst-
case performance
of find().

CS 2110 4Lecture 18: Heaps and Priority Queues October 28, 2025

Complexity of Binary Search Tree find()

Answer: An unbalanced tree can lead to O(S) performance

CS 2110 5Lecture 18: Heaps and Priority Queues October 28, 2025

Complexity of Binary Search Tree find()

Answer: An unbalanced tree can lead to O(S) performance

How can we keep
BSTs balanced?

CS 2110 6Lecture 18: Heaps and Priority Queues October 28, 2025

Balanced Binary Search Tree

How can we keep
BSTs balanced?

• Perform rotations with every
modification

• each rotation is O(1)
• number of rotations is up to

height H (a rotation at every
level)

• Balanced BST height is always
O(log size)

• Balanced BST operations are at
worst O(log size)

CS 2110
October 28, 2025

CS 2110, Matt Eichhorn and Leah Perlmutter

Lecture 18: Heaps and Priority Queues

CS 2110 8Lecture 18: Heaps and Priority Queues October 28, 2025

• Public Health Announcement
• One of the best ways to care for

each other is to keep each other
healthy!

• Stay home when you are very sick
• If you must come to class when

coughing or sneezing, wear a mask
and practice social distancing

• If someone sitting near you seems
sick, you can get up and move
farther away

Announcements

CS 2110 9Lecture 18: Heaps and Priority Queues October 28, 2025

• Prelim 2 coming up Thursday 11/6
• Conflict survey due Thurs 10/30 by 5pm -------→
• Make sure you are all caught up in your learning
• Ed post and practice exam coming Thursday

Announcements

https://docs.google.com/forms/d/e/1FAIpQLSf_sZvuXszRXkuF7fjU_daa0wGRlrKoSGz0HFvTqJrWu_T6pA/viewform?usp=header
https://docs.google.com/forms/d/e/1FAIpQLSf_sZvuXszRXkuF7fjU_daa0wGRlrKoSGz0HFvTqJrWu_T6pA/viewform?usp=header

Today's Learning Outcomes

CS 2110 10

Heaps and Priority Queues
1. Write recursive methods on general and binary trees.
2. Describe the invariants of a heap and determine whether

they are satisfied by a given binary tree.
3. Translate between the tree and array representations of a

heap.
4. Implement operations on a heap and determine their

time/space complexities.
5. Use a heap to implement a priority queue and analyze its

performance.

Lecture 18: Heaps and Priority Queues October 28, 2025

CS 2110Priority Queues

Common pattern: give me the “next” thing

Different choices for “next”:
• Queue (FIFO): who has been waiting the longest?
• Stack (LIFO): who was added most recently?
• Priority queue: who is most important?
Applications:
• Shortest paths
• Task deadlines (what is due soonest, regardless of when it was

assigned)
• Emergency room triage

Priority Queue Operations
What are Queue Operations?
Does being a priority queue change anything?
• peek(): Return the most important element
• remove(): Remove and return the most important element
• add(): Add a new element

Want these operations to be fast (low time complexity)
• Ideally, peek() should be O(1) (always know what the best value

is)
• remove() and add() must preserve whatever invariant makes
peek() fast without being slow themselves

Priority Queue: Possible Representations

Consider implementing a priority queue with the following data
structures. What would the worst-case time complexity of each
operation be? (let N denote the queue’s size)

Data structure peek() remove() add()
Unsorted linked list O(N) O(N) O(1)
Sorted array O(1) O(1) O(N)
Balanced BST O(log N) O(log N) O(log N)

Do we need/want to keep all elements
sorted?
Often, processing one element (remove) will cause many new
elements to be added to the queue (add).
• E.g. exploring a cave: take the right fork, but at the end of that

tunnel, three new tunnels open up
Keeping all these TODOs sorted is wasteful – we’ll keep having to
move things around when new tasks come in, and all we care about
is which one is next
Strategy: relax invariant

 Max Heap

Side note: Do not confuse the heap data structure with the memory heap
Side side note: Stack memory is organized as a stack, but heap memory is not
organized as a heap.

A Max Heap...

Is a binary tree (not BST) satisfying two additional properties:
1. Heap-ordered (order invariant). Every node is “more important”

than its children
• Min-heap: every node is <= its children (smallest on top)

“earliest deadline,” “shortest distance”
• Max-heap: every node is >= its children (biggest on top)

“largest reward”

Note: Bigger elements

can be deeper in the tree!

Every element is <= its parent

Heap-order (max-heap)

55

38 22

35 12 19 2

20 6 4 10 18

A Heap...

Is a binary tree (not BST) satisfying two additional properties:
1. Heap-ordered (order invariant). Every node is “more important”

than its children
2. Completeness (shape invariant). Every level of the tree (except

last) is completely filled, and on last level nodes are as far left as
possible.
• We call this shape a nearly complete binary tree

55

2238

35 1912 21

20 46 10 8

Completeness

Every level (except the last) is
completely filled.

Nodes on bottom level are as far left
as possible.

missing nodes

Completeness

Not a heap because:

• missing a node on level 2

• bottom level nodes are not as far
left as possible

55

2238

35 1912

20 4 10 8

Height of complete binary tree
Limiting case: a “perfect” tree

5

Levels total number
 of nodes
 1 2^1 – 1 = 1

2238 2 2^2 – 1 = 3

35 1912 21 3 2^3 – 1 = 7

20 46 10 8 10 8 8 4 2^4 – 1 = 15

Perfect binary tree with 2^k-1 nodes has k levels

Add one more node: 2^k nodes has k+1 levels

Complete binary tree with n nodes has log(𝑛 + 1) ⊂ O(log n) levels.
Takeaway: height is O(log N) (always balanced)

Poll 1

11 13

12 15

20

11

12

15 14

15

20

11 10

12

15

15

20

11 10

12

20

(a) (b) (c) (d)

Which of the following are valid max heaps?

(e) none of them

PollEv.com/leahp
text leahp to 22333

Poll 1

11 13

12 15

20

11

12

15 14

15

20

11 10

12

15

15

20

11 10

12

20

(a) (b) (c) (d)

Which of the following are valid max heaps?

a – does not satisfy the order property because 13 is a child of 12
b – does not satisfy the completeness property – root is missing right child
c – does not satisfy the completeness property -- 12 is missing right child
d – satisfies both order and completeness properties [correct answer]

PollEv.com/leahp
text leahp to 22333

Back to priority queues
Max Heap can represent a Priority Queue

• Efficiency we will achieve (storing N elements):
• add(): O(log N)
• remove(): O(log N)
• peek(): O(1)

• No linear-time operations: better than lists
• peek() is constant time: better (and simpler) than

balanced trees

Max Heap Implementation

Naive Implementation: a tree with nodes

public class HeapNode<E> {
 private E value;
 private HeapNode<E> left;
 private HeapNode<E> right;

...
}

But since tree is complete, even more space-

efficient implementation is possible…

Array implementation

public class Heap<E> {
 /** represents a complete binary tree in `heap[0..size)` */
 private E[] heap;
 private int size;

...
}

Indexing tree nodes

55

2238

35 1912 21

20 6

Number node starting at root row by

row, left to right

Same order as

level-order traversal

0

1 2

3 65

7 8

4

Children of node k are nodes 2k+1 and 2k+2

k=3

index of left child

2(3)+1 = 7

index of right child

2(3)+2 = 8

Parent of node k is node (k-1)/2
(integer division with flooring)

index of parent

3 = (7-1)/2

3 = (8-1)/2 -.5

Tree nodes as array elements

h[0]

h[1]

h[3]

h[7] h[8]

h[4]

h[9] h[10]

h[2]

h[5]

h[11]

h[6]

size = 12

0 1 2 3 4 5 6 7 8 9

Represent tree with array

• Store node number i in index i
of array b

• Children of b[k] are b[2k + 1]
and b[2k + 2]

• Parent of b[k] is b[(k-1)/2]

parent

children

55

2238

35 1912 21

20 46

0

1 2

3

9

65

7 8

4

55 38 22 35 12 19 21 20 6 4

0 1 2 3 4 5 6 7 8 9

Exercise: map tree to array

What is the array representation
of this tree?

A. {1, 2, 3, 4, 5, 9}
B. {3, 1, 2, 4, 5, 9}
C. {9, 4, 3, 1, 5, 2}
D. {9, 4, 5, 3, 1, 2}9

4

3 1

5

2

PollEv.com/leahp
text leahp to 22333

Demo code

Max Heap Algorithms

Exercise: Adding an element

55

38

35

20 6

12

4 10

22

19

18

2

50 ?

Must preserve:
1. Shape invariant
2. Order invariant

Goal: minimize changes

Step 1: Maintain shape invariant

What should 50’s parent be?
A. 2
B. 19
C. 22
D. 38
E. Nothing

55

38

35

20 6

12

4 10

22

19

18

2

50 ?

Step 2: Restore order invariant

Swap with parent until satisfied.
When done, what is 50’s left child?
A. 2
B. 19
C. 22
D. 38
E. Nothing

55

38

35

20 6

12

4 10

22

19

18

2

50 ?

55

2238

35 1912 2

20 46 10 18 50

1. Put in the new element in a new node (leftmost empty leaf)

Heap: add(e)

55

2238

35 1912 2

20 46 10 18 5019

5022

50

1. Put in the new element in a new node (leftmost empty leaf)
2. Bubble new element up while greater than parent

Time complexity
O(log size)

Heap: add(e)

Does add() preserve the order invariant?
Let x denote the new node.
• Algorithm invariant

• All nodes except x are <= their ancestors

• Algorithm body
• Case 1: If x <= parent, then it is also <= all

ancestors. Order invariant is satisfied
everywhere – done!

• Case 2: If x > parent, swap with parent

Does case 2 preserve the invariant?
• x’s children must be <= all of their ancestors, so they are <= x’s

parent. Making x’s parent their parent is ok
• x’s sibling was <= x’s parent, so making x its new parent is ok

(since x > parent)

55

2238

35 1912 2

20 46 10 18 50

Heap: peek()

55

2238

35 1912 2

20 46 10 18

55

1. Return root value

Time complexity...
 is O(1)

55

38

35 12 2

20 46 10 18 19

22

50

1. Save root element in a local variable

55

Heap: remove()

55

38

35 12 2

20 46 10 18 19

22

50

1. Save root element in a local variable
2. Assign last value to root, delete last node.

5519

Heap: remove()

19

Must preserve:
1. Shape invariant
2. Order invariant

Goal: minimize changes

Exercise: restore the order invariant

19

38

35

20 6

12

4 10

50

22

18

2

Must preserve:
1. Shape invariant
2. Order invariant

Goal: minimize changes

Checkpoint: Bubble down

For a max-heap, when “bubbling down”, which child should you
swap with?
A. Left
B. Right
C. Whichever is larger
D. Whichever is smaller
E. Doesn’t matter

19

38

35

20 6

12

4 10

50

22

18

2

55

38

35 12 2

20 46 10 18

22

50

1. Save root element in a local variable
2. Assign last value to root, delete last node.
3. While less than a child, switch with bigger child (bubble down)

Time complexity...
O(log size) 5519

19

19

50

22

Heap: remove()

Specifying priorities

• Use element ordering: Comparable or Comparator
• Example: Assignments ordered by their due date
• Used by java.util.PriorityQueue<E> (min-heap)

• Separate priority values: heap stores (element, priority) pairs

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/PriorityQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/PriorityQueue.html

Wrapup:
Heap sort

Sorting with a heap

• A heap is not sorted
• But repeatedly removing

values will yield them in order
• Max heap: descending order
• Min heap: ascending order

• Each removal takes O(log N)
time (worst case)
• N removals is O(N log N)

• See animation in lecture notes

55

38

35

20 6

12

4 10

22

19

18

2

CS 2110 56

Metacognition

• Take 1 minute to write down a brief summary of what
you have learned today

closing announcements to follow...

Lecture 18: Heaps and Priority Queues October 28, 2025

CS 2110 57Lecture 18: Heaps and Priority Queues October 28, 2025

• Prelim 2 coming up Thursday 11/6
• Conflict survey due Thurs 10/30 by 5pm -------→
• Make sure you are all caught up in your learning
• Ed post and practice exam coming Thursday

• Keep each other healthy!

Announcements

https://docs.google.com/forms/d/e/1FAIpQLSf_sZvuXszRXkuF7fjU_daa0wGRlrKoSGz0HFvTqJrWu_T6pA/viewform?usp=header
https://docs.google.com/forms/d/e/1FAIpQLSf_sZvuXszRXkuF7fjU_daa0wGRlrKoSGz0HFvTqJrWu_T6pA/viewform?usp=header

	Slide 1:  Complexity of Binary Search Tree find()
	Slide 2:  Complexity of Binary Search Tree find()
	Slide 3:  Complexity of Binary Search Tree find()
	Slide 4:  Complexity of Binary Search Tree find()
	Slide 5:  Complexity of Binary Search Tree find()
	Slide 6:  Balanced Binary Search Tree
	Slide 7: Lecture 18: Heaps and Priority Queues
	Slide 8:  Announcements
	Slide 9:  Announcements
	Slide 10
	Slide 11: Priority Queues
	Slide 12: Common pattern: give me the “next” thing
	Slide 13: Priority Queue Operations
	Slide 14: Priority Queue: Possible Representations
	Slide 16: Do we need/want to keep all elements sorted?
	Slide 17: ✨ ✨ ✨ Max Heap ✨ ✨ ✨
	Slide 18: A Max Heap...
	Slide 19: Heap-order (max-heap)
	Slide 20: A Heap...
	Slide 21: Completeness
	Slide 22: Completeness
	Slide 23: Height of complete binary tree Limiting case: a “perfect” tree
	Slide 24: Poll 1
	Slide 25: Poll 1
	Slide 26: Back to priority queues
	Slide 27: Max Heap Implementation
	Slide 28: Naive Implementation: a tree with nodes
	Slide 29: Array implementation
	Slide 30: Indexing tree nodes
	Slide 31: Tree nodes as array elements
	Slide 32: Represent tree with array
	Slide 33: Exercise: map tree to array
	Slide 34: Demo code
	Slide 35: Max Heap Algorithms
	Slide 36: Exercise: Adding an element
	Slide 37: Step 1: Maintain shape invariant
	Slide 38: Step 2: Restore order invariant
	Slide 39: Heap: add(e)
	Slide 40: Heap: add(e)
	Slide 41: Does add() preserve the order invariant?
	Slide 42: Heap: peek()
	Slide 43: Heap: remove()
	Slide 44: Heap: remove()
	Slide 45: Exercise: restore the order invariant
	Slide 46: Checkpoint: Bubble down
	Slide 47: Heap: remove()
	Slide 50: Specifying priorities
	Slide 52: Wrapup: Heap sort
	Slide 53: Sorting with a heap
	Slide 56:  Metacognition
	Slide 57:  Announcements

