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Complexity of Binary Search Tree find()
Recall the Binary Search Tree find method from last lecture.
What is the worst-case time complexity for find()?
Write your answer in terms of size, S, of the tree.
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Complexity of Binary Search Tree find()
Recall the Binary Search Tree find method from last lecture.
What is the worst-case time complexity for find()?
Write your answer in terms of size, S, of the tree.

A) O(1)
B) O(log(S))
C) O(S)
D) O(S2)
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Complexity of Binary Search Tree find()
Recall the Binary Search Tree find method from last lecture.
What is the worst-case time complexity for find()?
Write your answer in terms of size, S, of the tree.

A) O(1)
B) O(log(S))
C) O(S)
D) O(S2)

Draw a tree that 
leads to worst-
case performance 
of find().
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Complexity of Binary Search Tree find()

Answer: An unbalanced tree can lead to O(S) performance
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Complexity of Binary Search Tree find()

Answer: An unbalanced tree can lead to O(S) performance

How can we keep 
BSTs balanced?
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Balanced Binary Search Tree

How can we keep 
BSTs balanced?

• Perform rotations with every 
modification

• each rotation is O(1)
• number of rotations is up to 

height H (a rotation at every 
level)

• Balanced BST height is always 
O(log size)

• Balanced BST operations are at 
worst O(log size)
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Lecture 18: Heaps and Priority Queues
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• Public Health Announcement
• One of the best ways to care for 

each other is to keep each other 
healthy!

• Stay home when you are very sick
• If you must come to class when 

coughing or sneezing, wear a mask 
and practice social distancing

• If someone sitting near you seems 
sick, you can get up and move 
farther away

Announcements
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• Prelim 2 coming up Thursday 11/6
• Conflict survey due Thurs 10/30 by 5pm -------→
• Make sure you are all caught up in your learning
• Ed post and practice exam coming Thursday

Announcements

https://docs.google.com/forms/d/e/1FAIpQLSf_sZvuXszRXkuF7fjU_daa0wGRlrKoSGz0HFvTqJrWu_T6pA/viewform?usp=header
https://docs.google.com/forms/d/e/1FAIpQLSf_sZvuXszRXkuF7fjU_daa0wGRlrKoSGz0HFvTqJrWu_T6pA/viewform?usp=header


Today's Learning Outcomes
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Heaps and Priority Queues
1. Write recursive methods on general and binary trees. 
2. Describe the invariants of a heap and determine whether 

they are satisfied by a given binary tree.
3. Translate between the tree and array representations of a 

heap.
4. Implement operations on a heap and determine their 

time/space complexities.
5. Use a heap to implement a priority queue and analyze its 

performance.

Lecture 18: Heaps and Priority Queues October 28, 2025
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Common pattern: give me the “next” thing

Different choices for “next”:
• Queue (FIFO): who has been waiting the longest?
• Stack (LIFO): who was added most recently?
• Priority queue: who is most important?
Applications:
• Shortest paths
• Task deadlines (what is due soonest, regardless of when it was 

assigned)
• Emergency room triage



Priority Queue Operations
What are Queue Operations? 
Does being a priority queue change anything?
• peek(): Return the most important element
• remove(): Remove and return the most important element
• add(): Add a new element

Want these operations to be fast (low time complexity)
• Ideally, peek() should be O(1) (always know what the best value 

is)
• remove() and add() must preserve whatever invariant makes 
peek() fast without being slow themselves



Priority Queue: Possible Representations

Consider implementing a priority queue with the following data 
structures.  What would the worst-case time complexity of each 
operation be? (let N denote the queue’s size)

Data structure peek() remove() add()
Unsorted linked list O(N) O(N) O(1)
Sorted array O(1) O(1) O(N)
Balanced BST O(log N) O(log N) O(log N)



Do we need/want to keep all elements 
sorted?
Often, processing one element (remove) will cause many new 
elements to be added to the queue (add).
• E.g. exploring a cave: take the right fork, but at the end of that 

tunnel, three new tunnels open up
Keeping all these TODOs sorted is wasteful – we’ll keep having to 
move things around when new tasks come in, and all we care about 
is which one is next
Strategy: relax invariant



   Max Heap   

Side note: Do not confuse the heap data structure with the memory heap
Side side note: Stack memory is organized as a stack, but heap memory is not 
organized as a heap.



A Max Heap...

Is a binary tree (not BST) satisfying two additional properties:
1. Heap-ordered (order invariant). Every node is “more important” 

than its children
• Min-heap: every node is <= its children (smallest on top)

“earliest deadline,” “shortest distance”
• Max-heap: every node is >= its children (biggest on top)

“largest reward”



Note: Bigger elements

can be deeper in the tree!

Every element is <= its parent

Heap-order (max-heap)

55

38 22

35 12 19 2

20 6 4 10 18



A Heap...

Is a binary tree (not BST) satisfying two additional properties:
1. Heap-ordered (order invariant). Every node is “more important” 

than its children
2. Completeness (shape invariant). Every level of the tree (except 

last) is completely filled, and on last level nodes are as far left as 
possible. 
• We call this shape a nearly complete binary tree



55

2238

35 1912 21

20 46 10 8

Completeness

Every level (except the last) is 
completely filled.

Nodes on bottom level are as far left 
as possible. 



missing  nodes

Completeness

Not a heap because:

• missing a node on level 2

• bottom level nodes are not as far 
left as possible

55

2238

35 1912

20 4 10 8



Height of complete binary tree
Limiting case: a “perfect” tree

5

Levels  total number
                of nodes
    1       2^1 – 1 = 1

2238 2       2^2 – 1 = 3

35 1912 21 3       2^3 – 1 = 7

20 46 10 8 10 8 8 4       2^4 – 1 = 15

Perfect binary tree with 2^k-1 nodes has k levels 

Add one more node: 2^k nodes has k+1 levels 

Complete binary tree with n nodes has log(𝑛 + 1)  ⊂ O(log n) levels.  
Takeaway: height is O(log N) (always balanced)



Poll 1
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(a) (b) (c) (d)

Which of the following are valid max heaps?

(e) none of them
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Poll 1
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15
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20

(a) (b) (c) (d)

Which of the following are valid max heaps?

a – does not satisfy the order property because 13 is a child of 12
b – does not satisfy the completeness property – root is missing right child
c – does not satisfy the completeness property -- 12 is missing right child
d – satisfies both order and completeness properties [correct answer]

PollEv.com/leahp        
text leahp  to 22333



Back to priority queues
Max Heap can represent a Priority Queue

• Efficiency we will achieve (storing N elements):
• add(): O(log N)
• remove(): O(log N)
• peek(): O(1)

• No linear-time operations:  better than lists
• peek() is constant time:  better (and simpler) than 

balanced trees



Max Heap Implementation



Naive Implementation: a tree with nodes

public class HeapNode<E> {
  private E value;
  private HeapNode<E> left;
  private HeapNode<E> right;

...
}

But since tree is complete, even more space-

efficient implementation is possible…



Array implementation

public class Heap<E> {
  /** represents a complete binary tree in `heap[0..size)` */
  private E[] heap;
  private int size;

...
}



Indexing tree nodes

55

2238

35 1912 21

20 6

Number node starting at root row by 

row, left to right

Same order as

level-order traversal

0

1 2

3 65

7 8

4

Children of node k are nodes   2k+1  and  2k+2

k=3

index of left child

2(3)+1 = 7

index of right child

2(3)+2 = 8

Parent of node k is node (k-1)/2
(integer division with flooring) 

index of parent

3 = (7-1)/2

3 = (8-1)/2 -.5



Tree nodes as array elements

h[0]

h[1]

h[3]

h[7] h[8]

h[4]

h[9] h[10]

h[2]

h[5]

h[11]

h[6]

size = 12



0 1 2 3 4 5 6 7 8 9

Represent tree with array

• Store node number i in index i 
of array b

• Children of b[k] are b[2k + 1] 
and b[2k + 2]

• Parent of b[k] is b[(k-1)/2]

parent

children

55

2238

35 1912 21

20 46

0

1 2

3

9

65

7 8

4

55 38 22 35 12 19 21 20 6 4

0   1    2   3    4    5    6    7   8    9  



Exercise: map tree to array

What is the array representation 
of this tree?

A. {1, 2, 3, 4, 5, 9}
B. {3, 1, 2, 4, 5, 9}
C. {9, 4, 3, 1, 5, 2}
D. {9, 4, 5, 3, 1, 2}9

4

3 1

5

2
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Demo code



Max Heap Algorithms



Exercise: Adding an element

55
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18

2

50 ?

Must preserve:
1. Shape invariant
2. Order invariant

Goal: minimize changes



Step 1: Maintain shape invariant

What should 50’s parent be?
A. 2
B. 19
C. 22
D. 38
E. Nothing
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38

35

20 6

12

4 10

22

19

18

2

50 ?



Step 2: Restore order invariant

Swap with parent until satisfied.
When done, what is 50’s left child?
A. 2
B. 19
C. 22
D. 38
E. Nothing

55

38

35

20 6

12

4 10

22

19

18

2

50 ?
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35 1912 2

20 46 10 18 50

1. Put in the new element in a new node (leftmost empty leaf)

Heap: add(e)



55

2238

35 1912 2

20 46 10 18 5019

5022

50

1. Put in the new element in a new node (leftmost empty leaf)
2. Bubble new element up while greater than parent

Time complexity
O(log size)

Heap: add(e)



Does add() preserve the order invariant?
Let x denote the new node.
• Algorithm invariant

• All nodes except x are <= their ancestors

• Algorithm body
• Case 1: If x <= parent, then it is also <= all 

ancestors.  Order invariant is satisfied 
everywhere – done!

• Case 2: If x > parent, swap with parent

Does case 2 preserve the invariant?
• x’s children must be <= all of their ancestors, so they are <= x’s 

parent.  Making x’s parent their parent is ok
• x’s sibling was <= x’s parent, so making x its new parent is ok 

(since x > parent)

55

2238

35 1912 2

20 46 10 18 50



Heap: peek()

55

2238

35 1912 2

20 46 10 18

55

1. Return root value

Time complexity...
 is O(1)
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50

1. Save root element in a local variable

55

Heap: remove()
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38

35 12 2

20 46 10 18 19

22

50

1. Save root element in a local variable
2. Assign last value to root, delete last node. 

5519

Heap: remove()

19

Must preserve:
1. Shape invariant
2. Order invariant

Goal: minimize changes



Exercise: restore the order invariant
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Must preserve:
1. Shape invariant
2. Order invariant

Goal: minimize changes



Checkpoint: Bubble down

For a max-heap, when “bubbling down”, which child should you 
swap with?
A. Left
B. Right
C. Whichever is larger
D. Whichever is smaller
E. Doesn’t matter
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55

38

35 12 2

20 46 10 18

22

50

1. Save root element in a local variable
2. Assign last value to root, delete last node. 
3. While less than a child, switch with bigger child (bubble down)

Time complexity...
O(log size) 5519

19

19

50

22

Heap: remove()



Specifying priorities

• Use element ordering: Comparable or Comparator
• Example: Assignments ordered by their due date
• Used by java.util.PriorityQueue<E> (min-heap)

• Separate priority values: heap stores (element, priority) pairs

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/PriorityQueue.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/PriorityQueue.html


Wrapup:
Heap sort



Sorting with a heap

• A heap is not sorted
• But repeatedly removing 

values will yield them in order
• Max heap: descending order
• Min heap: ascending order

• Each removal takes O(log N) 
time (worst case)
• N removals is O(N log N)

• See animation in lecture notes
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Metacognition

• Take 1 minute to write down a brief summary of what 
you have learned today

closing announcements to follow...

Lecture 18: Heaps and Priority Queues October 28, 2025



CS 2110 57Lecture 18: Heaps and Priority Queues October 28, 2025

• Prelim 2 coming up Thursday 11/6
• Conflict survey due Thurs 10/30 by 5pm -------→
• Make sure you are all caught up in your learning
• Ed post and practice exam coming Thursday

• Keep each other healthy!

Announcements

https://docs.google.com/forms/d/e/1FAIpQLSf_sZvuXszRXkuF7fjU_daa0wGRlrKoSGz0HFvTqJrWu_T6pA/viewform?usp=header
https://docs.google.com/forms/d/e/1FAIpQLSf_sZvuXszRXkuF7fjU_daa0wGRlrKoSGz0HFvTqJrWu_T6pA/viewform?usp=header
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