Lecture 19: Sets and Maps

CS 2110, Matt Eichhorn and Leah Perlmutter
October 30, 2025




Announcements

* Process Over Product

* | don’t lift weights because | want
the weights to be in the air!

* Keep track of the real goals of
learning —the changes in yourself.

* Remember self care to support
your learning.
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Announcements

* Teaching and Learning Philosophy: Questions and
silences

* when | ask a question, it’s not to get the answer as fast as
possible, but rather to give everyone a chance to think
about the question
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Announcements

* Coming soon: Ed post about Prelim 2
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https://edstem.org/us/courses/81279/discussion/7228745

Roadmap

Java, Complexity, ADTs I Beyond ADTs
OOP * Trees e Graphical User
e start—9/30 * Tues 10/21, Thurs nterfaces,

10/23, Thurs 10/28
 Set and Map
ADTs | * Today

Parallel
Programming

* 11/18 —end of
ol * Hash Tables
’ * Graphs

* 10/2-10/16 e Tues 11/6, Thurs

11/11, Tues 11/13
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Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues
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Set Basics




Set Basics

* Unordered
e Distinct elements

Examples
* Finite Set (mathematics)
e Set of countries in the world
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Set Operations

e Contains —isthe elementin the set?
* parameter: element
* return type: boolean

* Add - add element to set if not already there. Did we succeed?

* parameter: element
* return type: boolean

* Remove -remove element from set if exists. Did we succeed?
* parameter: element
* return type: boolean

* Size - how many elements are in this set?
* return type: int
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Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues
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Set Performance




Set Performance

Unordered List O(N) O(N) O(N) O(1)
Ordered List O(log N) O(N) O(N) O(1)
Balanced Tree O(log N) O(logN) Of(logN) O(1)
77?7 O(1)* O(1)* O(1)* O(1)
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Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues
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Set Implementation




Pollev (for use during demo)

PollEv.com/leahp
text leahp to 22333
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Code Demo
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Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues
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Map Basics




The Map ADT

 Given a word, return its
definition

 Given a contact’s name, return
their phone number

* Given a student’s ID number,
return their NetlD, course
history, student records, etc.

* All involve looking up a
associated with some

* Also known as:
* Dictionary
* Associative array



Map Operations

° put
* parameters: key, value
* Associate value with key

e get
* parameter: key
* Return value associated with key

* remove

* parameter: key
* Remove any association with key, if it existed, and return it

* containsKey
* parameter: key
* Return true if an association exists with that key, false if not

* Size
 Return number of associations in the Map



Map interface

Generic on two type parameters

interface Map<K, V> {..}
* K: Type of keys
* V: Type of values

Key/Value pair is an Entry
record Entry<K, V> (K key, V value) {...}

e Similar to a set of entries
* Keys are unique (a key can only map to one value)



Interface methods

void put (K key, V wvalue)
Associate value with key

V get (K key)
Return value associated with key

V remove (K key)
Remove any association for key

Set<K> keySet()
Allow iterating over keys

boolean containsKey (K key)
Tell if key is In map



Exercise

* Let bdays be a
Map<String,
LocalDate> that
associates people’s
names with their birthday

* Write a loop to print the
name and birthday of
everyone in bdays

void put (K key, V wvalue)
Associate value with key

V get (K key)
Return value associated with key

V remove (K key)
Remove any association for key

Set<K> keySet()
Allow iterating over keys

boolean containsKey (K key)
Tell if key is In map



Example client code

Map<String, LocalDate> bdays = ..;

bdays.put("Alan Turing", LocalDate.of(1912, 6, 23));
bdays.put("John von Neumann", LocalDate.of(1903, 12, 28));

println("Alan Turing was born on " + bdays.get("Alan Turing"));

for (String name : bdays.keySet()) {
println(name + " was born on " + bdays.get(name));

¥

println("Do I know Barbara Liskov’s birthday? " +
(bdays.containsKey("Barbara Liskov") ? "yes" : "no"));



Map Performance
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Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues
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Map Implementation




Set versus Map code

// Set // Map (if we wrote contains from scratch)
@Override @Override
public boolean contains (T elem) ({ public boolean containsKey (K key) ({
assert elem !'= null; assert key !'= null;
for (T member : this.data) { for (Entry<K, V> entry : this.data) ({
if (member.equals(elem)) { if (entry.key() .equals(key)) ({
return true; return true;
} }
} }
return false; return false;

Take Away: While conceptually Map is similar to a Set of Entry, Map cannot
simply be a Set<Entry<K, V>> because uniqueness in a Set is based on no
repeated elements whereas in a Map, it’s based on no repeated keys. The Map

code has to delve into the Entry and check/manipulate its key, whereas Set
code manipulates whole elements.
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Overview of today
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Dynamic Priority Queue




Dynamic Priority Queue

/**
* A dynamic priority queue implementation using composition with a max heap.
*/

public class MaxHeapDynamicPriorityQueue<T> implements DynamicPriorityQueue<T> {

/**
* Represents an association of a priority to an "elem .
* Entry s are compared using their priorities.
*/
private record Entry<T>(T elem, double priority) implements
Comparable<Entry<T>> {

@Override
public int compareTo (Entry<T> other) ({
return (int) Math.signum(priority - other.priority);
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Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
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* Map Basics

* Map Implementation
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Metacognition

e Take 1 minute to write
. Sets
down a brief summary . Sof Basics

of what you have learned . Set Performance by

today Representation

* Set Implementation (Live
coding)

Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues

CS 2110 Lecture 19: Sets and Maps October 30, 2025



Announcements

* Coming soon: Ed post about Prelim 2
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https://edstem.org/us/courses/81279/discussion/7228745
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