Lecture 19: Sets and Maps

CS 2110, Matt Eichhorn and Leah Perlmutter
October 30, 2025

Announcements

* Process Over Product

* | don’t lift weights because | want
the weights to be in the air!

* Keep track of the real goals of
learning —the changes in yourself.

* Remember self care to support
your learning.

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Announcements

* Teaching and Learning Philosophy: Questions and
silences

* when | ask a question, it’s not to get the answer as fast as
possible, but rather to give everyone a chance to think
about the question

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Announcements

* Coming soon: Ed post about Prelim 2

CS 2110 Lecture 19: Sets and Maps October 30, 2025

https://edstem.org/us/courses/81279/discussion/7228745

Roadmap

Java, Complexity, ADTs I Beyond ADTs
OOP * Trees e Graphical User
e start—9/30 * Tues 10/21, Thurs nterfaces,

10/23, Thurs 10/28
 Set and Map
ADTs | * Today

Parallel
Programming

* 11/18 —end of
ol * Hash Tables
’ * Graphs

* 10/2-10/16 e Tues 11/6, Thurs

11/11, Tues 11/13

CS 2110

Lecture 19: Sets and Maps October 30, 2025

Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Set Basics

Set Basics

* Unordered
e Distinct elements

Examples
* Finite Set (mathematics)
e Set of countries in the world

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Set Operations

e Contains —isthe elementin the set?
* parameter: element
* return type: boolean

* Add - add element to set if not already there. Did we succeed?

* parameter: element
* return type: boolean

* Remove -remove element from set if exists. Did we succeed?
* parameter: element
* return type: boolean

* Size - how many elements are in this set?
* return type: int

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Set Performance

Set Performance

Unordered List O(N) O(N) O(N) O(1)
Ordered List O(log N) O(N) O(N) O(1)
Balanced Tree O(log N) O(logN) Of(logN) O(1)
77?7 O(1)* O(1)* O(1)* O(1)

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Set Implementation

Pollev (for use during demo)

PollEv.com/leahp
text leahp to 22333

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Code Demo

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Map Basics

The Map ADT

 Given a word, return its
definition

 Given a contact’s name, return
their phone number

* Given a student’s ID number,
return their NetlD, course
history, student records, etc.

* All involve looking up a
associated with some

* Also known as:
* Dictionary
* Associative array

Map Operations

° put
* parameters: key, value
* Associate value with key

e get
* parameter: key
* Return value associated with key

* remove

* parameter: key
* Remove any association with key, if it existed, and return it

* containsKey
* parameter: key
* Return true if an association exists with that key, false if not

* Size
 Return number of associations in the Map

Map interface

Generic on two type parameters

interface Map<K, V> {..}
* K: Type of keys
* V: Type of values

Key/Value pair is an Entry
record Entry<K, V> (K key, V value) {...}

e Similar to a set of entries
* Keys are unique (a key can only map to one value)

Interface methods

void put (K key, V wvalue)
Associate value with key

V get (K key)
Return value associated with key

V remove (K key)
Remove any association for key

Set<K> keySet()
Allow iterating over keys

boolean containsKey (K key)
Tell if key is In map

Exercise

* Let bdays be a
Map<String,
LocalDate> that
associates people’s
names with their birthday

* Write a loop to print the
name and birthday of
everyone in bdays

void put (K key, V wvalue)
Associate value with key

V get (K key)
Return value associated with key

V remove (K key)
Remove any association for key

Set<K> keySet()
Allow iterating over keys

boolean containsKey (K key)
Tell if key is In map

Example client code

Map<String, LocalDate> bdays = ..;

bdays.put("Alan Turing", LocalDate.of(1912, 6, 23));
bdays.put("John von Neumann", LocalDate.of(1903, 12, 28));

println("Alan Turing was born on " + bdays.get("Alan Turing"));

for (String name : bdays.keySet()) {
println(name + " was born on " + bdays.get(name));

¥

println("Do I know Barbara Liskov’s birthday? " +
(bdays.containsKey("Barbara Liskov") ? "yes" : "no"));

Map Performance

=Z
O

Unordered List O(N) (N) (N)
Ordered List O(log N) O(N) O(N)
(((
(((

O

1
1

Balanced Tree O(log N) O(logN) O(logN) O

2797 O

(1)
(1)
(1)
(1)

—
N—
*
O

Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Map Implementation

Set versus Map code

// Set // Map (if we wrote contains from scratch)
@Override @Override
public boolean contains (T elem) ({ public boolean containsKey (K key) ({
assert elem !'= null; assert key !'= null;
for (T member : this.data) { for (Entry<K, V> entry : this.data) ({
if (member.equals(elem)) { if (entry.key() .equals(key)) ({
return true; return true;
} }
} }
return false; return false;

Take Away: While conceptually Map is similar to a Set of Entry, Map cannot
simply be a Set<Entry<K, V>> because uniqueness in a Set is based on no
repeated elements whereas in a Map, it’s based on no repeated keys. The Map

code has to delve into the Entry and check/manipulate its key, whereas Set
code manipulates whole elements.

CS 2110

Lecture 19: Sets and Maps October 30, 2025

Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Dynamic Priority Queue

Dynamic Priority Queue

/**
* A dynamic priority queue implementation using composition with a max heap.
*/

public class MaxHeapDynamicPriorityQueue<T> implements DynamicPriorityQueue<T> {

/**
* Represents an association of a priority to an "elem .
* Entry s are compared using their priorities.
*/
private record Entry<T>(T elem, double priority) implements
Comparable<Entry<T>> {

@Override
public int compareTo (Entry<T> other) ({
return (int) Math.signum(priority - other.priority);

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Overview of today

Sets

* Set Basics

* Set Performance by Representation
* Set Implementation (Live coding)
Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Metacognition

e Take 1 minute to write
. Sets
down a brief summary . Sof Basics

of what you have learned . Set Performance by

today Representation

* Set Implementation (Live
coding)

Maps

* Map Basics

* Map Implementation

* Dynamic Priority Queues

CS 2110 Lecture 19: Sets and Maps October 30, 2025

Announcements

* Coming soon: Ed post about Prelim 2

CS 2110 Lecture 19: Sets and Maps October 30, 2025

https://edstem.org/us/courses/81279/discussion/7228745

	Slide 1: Lecture 19: Sets and Maps
	Slide 2:  Announcements
	Slide 3:  Announcements
	Slide 4:  Announcements
	Slide 5:  Roadmap
	Slide 6:  Overview of today
	Slide 8: Set Basics
	Slide 9:  Set Basics
	Slide 10:  Set Operations
	Slide 11:  Overview of today
	Slide 12: Set Performance
	Slide 13:  Set Performance
	Slide 14:  Overview of today
	Slide 15: Set Implementation
	Slide 16:  Pollev (for use during demo)
	Slide 17:  Code Demo
	Slide 18:  Overview of today
	Slide 19: Map Basics
	Slide 20: The Map ADT
	Slide 21: Map Operations
	Slide 22: Map interface
	Slide 23: Interface methods
	Slide 24: Exercise
	Slide 25: Example client code
	Slide 26: Map Performance
	Slide 27:  Overview of today
	Slide 28: Map Implementation
	Slide 29:  Set versus Map code
	Slide 30:  Overview of today
	Slide 31: Dynamic Priority Queue
	Slide 32:  Dynamic Priority Queue
	Slide 33:  Overview of today
	Slide 34:  Metacognition
	Slide 35:  Announcements

